cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213077 a(n) = round(n^2 - sqrt(n)).

Original entry on oeis.org

0, 0, 3, 7, 14, 23, 34, 46, 61, 78, 97, 118, 141, 165, 192, 221, 252, 285, 320, 357, 396, 436, 479, 524, 571, 620, 671, 724, 779, 836, 895, 955, 1018, 1083, 1150, 1219, 1290, 1363, 1438, 1515, 1594, 1675, 1758, 1842, 1929, 2018, 2109, 2202, 2297, 2394
Offset: 0

Views

Author

Ian Stewart, Jun 04 2012

Keywords

Examples

			0^2 - sqrt(0) = 0;
1^2 - sqrt(1) = 0;
2^2 - sqrt(2) = 3,
3^2 - sqrt(3) = 7;
4^2 - sqrt(4) = 14.
		

Crossrefs

Cf. A056847.

Programs

  • Maple
    seq(round(n^2-sqrt(n)), n=0..100); # Robert Israel, Jul 29 2022
  • Mathematica
    Table[Round[n^2 - Sqrt[n]], {n, 0, 100}] (* T. D. Noe, Jun 06 2012 *)
  • Python
    count = 0
    while count < 50:
        ns = count * count
        ns = ns - math.sqrt(count)
        ns = round(ns)
        print(ns, end=',')
        count += 1
    
  • Python
    from math import isqrt
    def A213077(n): return n**2-(m:=isqrt(n))-int((n-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 29 2022