cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ian Stewart

Ian Stewart's wiki page.

Ian Stewart has authored 4 sequences.

A265645 a(n) = n^2 * floor(n/2).

Original entry on oeis.org

0, 0, 4, 9, 32, 50, 108, 147, 256, 324, 500, 605, 864, 1014, 1372, 1575, 2048, 2312, 2916, 3249, 4000, 4410, 5324, 5819, 6912, 7500, 8788, 9477, 10976, 11774, 13500, 14415, 16384, 17424, 19652, 20825, 23328, 24642, 27436, 28899, 32000, 33620, 37044, 38829, 42592, 44550, 48668, 50807, 55296, 57624, 62500
Offset: 0

Author

Ian Stewart, Apr 06 2016

Keywords

Crossrefs

Programs

  • GAP
    List([0..55], n -> n^2*Int(n/2)); # Muniru A Asiru, Apr 05 2018
  • Haskell
    seq' x = x^2 * (x `div` 2)
    map seq' [0..50]
    
  • Magma
    [n^2*Floor(n/2): n in [0..50]]; // Vincenzo Librandi, Apr 04 2018
    
  • Mathematica
    Table[n^2 Floor[n/2], {n, 0, 50}] (* Vincenzo Librandi, Apr 04 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,0,4,9,32,50,108},60] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    a(n) = n^2*(n\2); \\ Altug Alkan, Apr 14 2016
    
  • PARI
    concat(vector(2), Vec(x^2*(4+5*x+11*x^2+3*x^3+x^4)/((1-x)^4*(1+x)^3) + O(x^50))) \\ Colin Barker, Apr 14 2016
    

Formula

a(n) = A000290(n)*A004526(n). - Michel Marcus, Apr 14 2016
G.f.: x^2*(4 + 5*x + 11*x^2 + 3*x^3 + x^4)/((1 - x)^4*(1 + x)^3). - Ilya Gutkovskiy, Apr 14 2016; corrected by Colin Barker, Apr 14 2016
From Colin Barker, Apr 14 2016: (Start)
a(n) = n^2*(2*n + (-1)^n - 1)/4.
a(n) = n^3/2 for n even.
a(n) = n^2*(n-1)/2 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>6. (End)
Sum_{n>=2} 1/a(n) = zeta(3)/4 - Pi^2/4 - 2*log(2) + 4. - Amiram Eldar, Mar 15 2024

A213077 a(n) = round(n^2 - sqrt(n)).

Original entry on oeis.org

0, 0, 3, 7, 14, 23, 34, 46, 61, 78, 97, 118, 141, 165, 192, 221, 252, 285, 320, 357, 396, 436, 479, 524, 571, 620, 671, 724, 779, 836, 895, 955, 1018, 1083, 1150, 1219, 1290, 1363, 1438, 1515, 1594, 1675, 1758, 1842, 1929, 2018, 2109, 2202, 2297, 2394
Offset: 0

Author

Ian Stewart, Jun 04 2012

Keywords

Examples

			0^2 - sqrt(0) = 0;
1^2 - sqrt(1) = 0;
2^2 - sqrt(2) = 3,
3^2 - sqrt(3) = 7;
4^2 - sqrt(4) = 14.
		

Crossrefs

Cf. A056847.

Programs

  • Maple
    seq(round(n^2-sqrt(n)), n=0..100); # Robert Israel, Jul 29 2022
  • Mathematica
    Table[Round[n^2 - Sqrt[n]], {n, 0, 100}] (* T. D. Noe, Jun 06 2012 *)
  • Python
    count = 0
    while count < 50:
        ns = count * count
        ns = ns - math.sqrt(count)
        ns = round(ns)
        print(ns, end=',')
        count += 1
    
  • Python
    from math import isqrt
    def A213077(n): return n**2-(m:=isqrt(n))-int((n-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 29 2022

A180724 a(n) = n^2 + largest prime < n^2.

Original entry on oeis.org

7, 16, 29, 48, 67, 96, 125, 160, 197, 234, 283, 336, 389, 448, 507, 572, 641, 720, 797, 880, 963, 1052, 1147, 1244, 1349, 1456, 1557, 1680, 1787, 1914, 2045, 2176, 2309, 2448, 2587, 2736, 2883, 3032, 3197, 3350, 3523, 3696, 3869, 4042, 4229, 4416, 4601
Offset: 2

Author

Ian Stewart, Sep 18 2010

Keywords

Programs

  • Mathematica
    #+NextPrime[#,-1]&/@(Range[2,50]^2) (* Harvey P. Dale, Apr 08 2023 *)
  • PARI
    a(n) = n^2 + precprime(n^2-1); \\ Michel Marcus, Aug 23 2013

Formula

4 + 3 = 7; 9 + 7 = 16; 16 + 13 = 29; 25 + 23 = 48;
a(n) = n^2+A053001(n). - R. J. Mathar, Sep 19 2010
2n^2 - O(n^1.05) < a(n) < 2n^2. (Probably a much tighter lower bound is true.) - Charles R Greathouse IV, Jan 31 2023

A180046 a(n+1) = a(n-3) + a(n-2) - a(n-1) + a(n) starting with 1, 2, 3, 4.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 8, 11, 12, 14, 21, 30, 35, 40, 56, 81, 100, 115, 152, 218, 281, 330, 419, 588, 780, 941, 1168, 1595, 2148, 2662, 3277, 4358, 5891, 7472, 9216, 11993, 16140, 20835, 25904, 33202, 44273, 57810, 72643, 92308, 121748, 159893, 203096, 257259
Offset: 1

Author

Ian Stewart, Aug 08 2010

Keywords

Examples

			1 2 3 4 (by definition); 1 + 2 - 3 + 4 = 4, 2 + 3 - 4 + 4 = 5, 3 + 4 - 4 + 5 = 8.
		

Crossrefs

Cf. A100329.

Programs

  • Haskell
    import Data.List (zipWith4)
    a180046 n = a180046_list !! (n-1)
    a180046_list = [1..4] ++ zipWith4 (((((+) .) . (+)) .) . (-))
                              (drop 3 a180046_list) (drop 2 a180046_list)
                                (tail a180046_list) a180046_list
    -- Reinhard Zumkeller, Oct 08 2014
  • Mathematica
    LinearRecurrence[{1,-1,1,1},{1,2,3,4},50] (* Harvey P. Dale, Mar 18 2015 *)
  • PARI
    Vec(x*(1+x)*(2*x^2+1)/(1-x+x^2-x^3-x^4)+O(x^99)) \\ Charles R Greathouse IV, Jul 06 2011
    

Formula

G.f.: -x*(1+x)*(2*x^2+1)/(-1+x-x^2+x^3+x^4). - R. J. Mathar, Aug 14 2010
a(n) = (-1)^(n)*(A100329(n-1)-A100329(n)-2*A100329(n-2)+2*A100329(n-3)) with A100329(-1) = A100329(-2) = 0. - Johannes W. Meijer, Jul 06 2011

Extensions

More terms from R. J. Mathar, Aug 14 2010
Name edited by Michel Marcus, Feb 20 2025