cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213093 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^4).

Original entry on oeis.org

1, 1, 1, 4, 13, 62, 297, 1523, 8091, 43243, 234347, 1267141, 6814076, 36368431, 192079140, 1006805203, 5262612068, 27656507707, 147973596219, 815825605806, 4662818005761, 27504894986209, 165036600363916, 989160502170958, 5829789341752240, 33444482725193880
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 is the g.f. of the ternary tree numbers (A001764).
The first negative term is a(42) = -16825305705383790675462237694. - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 13*x^4 + 62*x^5 + 297*x^6 + 1523*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 119*x^4 + 516*x^5 + 2462*x^6 +...
A(-x*A(x)^4) = 1 - x - 3*x^2 - 6*x^3 - 31*x^4 - 141*x^5 - 697*x^6 - 3641*x^7 -...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^4]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^4,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))