A384866
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A213093.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 4, 0, 1, 4, 6, 10, 13, 0, 1, 5, 10, 19, 35, 62, 0, 1, 6, 15, 32, 69, 158, 297, 0, 1, 7, 21, 50, 119, 303, 760, 1523, 0, 1, 8, 28, 74, 190, 516, 1453, 3868, 8091, 0, 1, 9, 36, 105, 288, 821, 2462, 7359, 20487, 43243, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 4, 10, 19, 32, 50, 74, ...
0, 13, 35, 69, 119, 190, 288, ...
0, 62, 158, 303, 516, 821, 1248, ...
0, 297, 760, 1453, 2462, 3900, 5913, ...
-
b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-4*n+5*j+k-1, j-1)*b(n-j, j)/j));
a(n, k) = b(n, -k);
A213091
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^2).
Original entry on oeis.org
1, 1, 1, 2, 4, 11, 31, 98, 317, 1070, 3685, 12928, 45924, 164552, 593398, 2148288, 7796846, 28328601, 102948125, 373955584, 1357252616, 4921292287, 17828236695, 64546901169, 233660589210, 846258569786, 3068523234989, 11147449003438, 40600425590874, 148330067463010
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 31*x^6 + 98*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 13*x^4 + 34*x^5 + 96*x^6 + 296*x^7 +...
A(-x*A(x)^2) = 1 - x - x^2 - x^3 - 4*x^4 - 10*x^5 - 34*x^6 - 107*x^7 -...
-
nmax = 29; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[(-x) A[x]^2]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^2,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213096
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^3.
Original entry on oeis.org
1, 1, 3, 15, 82, 549, 3957, 31423, 262905, 2309655, 20954053, 195219912, 1855139472, 17913275558, 175183126884, 1731034436637, 17250012004590, 173095950538881, 1746875271992760, 17712083908168204, 180276161806773003, 1840572737915529150, 18838475627464850819
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 82*x^4 + 549*x^5 + 3957*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 33*x^2 + 200*x^3 + 1272*x^4 + 8730*x^5 + 63628*x^6 +...
A(-x*A(x)^6)^3 = 1 - 3*x - 6*x^2 - 19*x^3 - 156*x^4 - 1065*x^5 - 9165*x^6 -...
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^6 + O[x]^m]^3 // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213094
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^4)^2.
Original entry on oeis.org
1, 1, 2, 7, 26, 123, 622, 3490, 20468, 125643, 792606, 5118050, 33612998, 223770400, 1505528080, 10213807498, 69746716716, 478693572991, 3298184837434, 22790090901504, 157803590073220, 1094189186549354, 7593267782966708, 52713912426435111, 365948276764762712
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 123*x^5 + 622*x^6 + 3490*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1112*x^5 + 5614*x^6 +...
A(-x*A(x)^4)^2 = 1 - 2*x - 3*x^2 - 6*x^3 - 38*x^4 - 180*x^5 - 1095*x^6 -...
-
nmax = 24; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^4]^2) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^4,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213095
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^5)^2.
Original entry on oeis.org
1, 1, 2, 9, 40, 242, 1528, 10664, 76956, 575245, 4395910, 34131621, 268146598, 2122399923, 16884293154, 134689290877, 1075641369024, 8588548510081, 68496446989330, 545303352881863, 4331918361300882, 34337864000400360, 271657823631727330, 2146133623039711577
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 123*x^5 + 622*x^6 + 3490*x^7 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 95*x^3 + 485*x^4 + 2801*x^5 + 17560*x^6 +...
A(-x*A(x)^5)^2 = 1 - 2*x - 5*x^2 - 12*x^3 - 93*x^4 - 550*x^5 - 3981*x^6 -...
-
m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^5 + O[x]^m]^2 // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^5,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213092
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^3).
Original entry on oeis.org
1, 1, 1, 3, 8, 31, 120, 511, 2234, 9988, 45497, 208435, 959496, 4414091, 20252947, 92586100, 421351615, 1910531192, 8647504950, 39194735661, 178643040883, 822295086652, 3836023988259, 18167435295220, 87268076036356, 423657019406289, 2067868784722846
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 8*x^4 + 31*x^5 + 120*x^6 + 511*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 16*x^3 + 48*x^4 + 171*x^5 + 664*x^6 + 2760*x^7 +...
A(-x*A(x)^3) = 1 - x - 2*x^2 - 3*x^3 - 14*x^4 - 50*x^5 - 213*x^6 - 915*x^7 -...
-
nmax = 26; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^3]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^3,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213101
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.
Original entry on oeis.org
1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213102,
A213103,
A213104,
A213105.
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213102
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^4.
Original entry on oeis.org
1, 1, 4, 30, 240, 2433, 26388, 315726, 3958452, 51863952, 698988716, 9637772716, 135161761860, 1920878419569, 27583547221596, 399310273694328, 5817100622299116, 85152975761167179, 1251046169511714720, 18428780031111768466, 271964652432415737596
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 240*x^4 + 2433*x^5 + 26388*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 642*x^3 + 6030*x^4 + 61551*x^5 + 670344*x^6 +...
A(-x*A(x)^9)^4 = 1 - 4*x - 14*x^2 - 64*x^3 - 797*x^4 - 8188*x^5 - 104090*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213103,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213103
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^4.
Original entry on oeis.org
1, 1, 4, 42, 420, 5779, 83104, 1306684, 21283504, 356648125, 6100611232, 105634585546, 1845124077000, 32368064972555, 568794055227200, 9991239094888864, 175142529040285920, 3060545399532144497, 53279047286232892928, 923884653765128839312, 15965368274611453269820
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 420*x^4 + 5779*x^5 + 83104*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 114*x^2 + 1252*x^3 + 14775*x^4 + 193956*x^5 +...
A(-x*A(x)^12)^4 = 1 - 4*x - 26*x^2 - 148*x^3 - 2415*x^4 - 33192*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213104
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5.
Original entry on oeis.org
1, 1, 5, 40, 360, 3820, 43651, 543240, 7146185, 98885725, 1420274645, 21037156031, 319127602075, 4935547265370, 77525696636995, 1233356748777015, 19829269320322346, 321631227310756885, 5255920261950786655, 86436636022328320125, 1429253483704685851315
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +...
A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A002295,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213103,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
Showing 1-10 of 23 results.
Comments