cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A213101 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.

Original entry on oeis.org

1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(249). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213102 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^4.

Original entry on oeis.org

1, 1, 4, 30, 240, 2433, 26388, 315726, 3958452, 51863952, 698988716, 9637772716, 135161761860, 1920878419569, 27583547221596, 399310273694328, 5817100622299116, 85152975761167179, 1251046169511714720, 18428780031111768466, 271964652432415737596
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(142). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 240*x^4 + 2433*x^5 + 26388*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 642*x^3 + 6030*x^4 + 61551*x^5 + 670344*x^6 +...
A(-x*A(x)^9)^4 = 1 - 4*x - 14*x^2 - 64*x^3 - 797*x^4 - 8188*x^5 - 104090*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213104 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5.

Original entry on oeis.org

1, 1, 5, 40, 360, 3820, 43651, 543240, 7146185, 98885725, 1420274645, 21037156031, 319127602075, 4935547265370, 77525696636995, 1233356748777015, 19829269320322346, 321631227310756885, 5255920261950786655, 86436636022328320125, 1429253483704685851315
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
(6) G(x) = 1 + x/G(-x*G(x)^11)^6 when G(x) = 1 + x*G(x)^6 (A002295).
The first negative term is a(306). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +...
A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213098 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.

Original entry on oeis.org

1, 1, 2, 11, 56, 401, 2960, 23909, 199324, 1704937, 14871560, 131002444, 1162055526, 10330588405, 91813523884, 814261196562, 7195489202430, 63317110066321, 554812081610114, 4845145547265182, 42242647963009666, 368598374017590156, 3228911122031762918
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
The first negative term is a(67). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 56*x^4 + 401*x^5 + 2960*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 146*x^3 + 861*x^4 + 5772*x^5 + 42206*x^6 +...
A(-x*A(x)^6)^2 = 1 - 2*x - 7*x^2 - 20*x^3 - 172*x^4 - 1202*x^5 - 9766*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^6]^2 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213099 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^7)^3.

Original entry on oeis.org

1, 1, 3, 18, 112, 909, 7833, 74603, 740541, 7656219, 81187518, 878435208, 9647220024, 107137240686, 1199914011387, 13521738420240, 153051832116378, 1737562815056865, 19762347822563532, 224970273310192579, 2561375647064514444, 29149168085832027732
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(121). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 112*x^4 + 909*x^5 + 7833*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2079*x^4 + 16611*x^5 + 142702*x^6 +...
A(-x*A(x)^7)^3 = 1 - 3*x - 9*x^2 - 31*x^3 - 318*x^4 - 2586*x^5 - 25969*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^7]^3 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^7,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213100 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^3.

Original entry on oeis.org

1, 1, 3, 24, 181, 1893, 20601, 245176, 3018669, 38198478, 493218343, 6441378129, 84807054552, 1120545910725, 14820493111536, 195812569428897, 2580287366558579, 33878771120862777, 443012040333754728, 5770422757461475027, 74931929672784252306
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(68). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 181*x^4 + 1893*x^5 + 20601*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 63*x^2 + 516*x^3 + 4563*x^4 + 45207*x^5 + 486579*x^6 +...
A(-x*A(x)^9)^3 = 1 - 3*x - 15*x^2 - 64*x^3 - 798*x^4 - 8277*x^5 - 99411*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^3 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213105 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^6.

Original entry on oeis.org

1, 1, 6, 57, 614, 7716, 104322, 1529385, 23689968, 385885521, 6531397090, 114147452526, 2045979734964, 37435147640010, 696431496524796, 13134442980269397, 250527556214516892, 4824098879117797749, 93639919777995946446, 1830133457257882605430
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
(6) G(x) = 1 + x/G(-x*G(x)^11)^6 when G(x) = 1 + x*G(x)^6 (A002295).

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 57*x^3 + 614*x^4 + 7716*x^5 + 104322*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 138*x^2 + 1696*x^3 + 21723*x^4 + 292836*x^5 +...
A(-x*A(x)^12)^6 = 1 - 6*x - 21*x^2 - 146*x^3 - 1959*x^4 - 25056*x^5 -...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^6 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^6,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213225 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^4)).

Original entry on oeis.org

1, 1, 2, 6, 20, 76, 313, 1375, 6337, 30243, 148129, 739172, 3737993, 19077868, 97955307, 504707999, 2604312205, 13436676965, 69229324721, 355854322633, 1823672937884, 9314227843463, 47406130512872, 240498260267049, 1216833204738419, 6146116088495029, 31030233400282749
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 76*x^5 + 313*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 816*x^5 + 3468*x^6 +...
1/A(-x*A(x)^4) = 1 + x + 3*x^2 + 9*x^3 + 35*x^4 + 146*x^5 + 656*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 26; A[] = 1; Do[A[x] = 1/(1-x/A[-x*A[x]^4]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 23 2025 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^4, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213226 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^5)).

Original entry on oeis.org

1, 1, 2, 7, 27, 122, 607, 3208, 17688, 99803, 571238, 3292738, 19001315, 109303307, 624615928, 3537913240, 19843769848, 110273489737, 608712132055, 3355449334452, 18624818099047, 105191779542849, 610586100129734, 3662333209225714, 22652502251884322
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 27*x^4 + 122*x^5 + 607*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 380*x^4 + 1801*x^5 + 9045*x^6 +...
1/A(-x*A(x)^5) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 336*x^5 + 1805*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^5, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213228 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)^2).

Original entry on oeis.org

1, 1, 3, 14, 73, 440, 2862, 19991, 146939, 1125413, 8896018, 72067978, 595097838, 4987609871, 42290465703, 361845473658, 3117830204185, 27009650432888, 234932107635587, 2049479335366836, 17915253987741538, 156799716352350344, 1373180896765862962
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 73*x^4 + 440*x^5 + 2862*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1188*x^4 + 7656*x^5 + 51583*x^6 +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 268*x^4 + 1750*x^5 + 12422*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 17 results. Next