A213101
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.
Original entry on oeis.org
1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213102,
A213103,
A213104,
A213105.
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213103
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^4.
Original entry on oeis.org
1, 1, 4, 42, 420, 5779, 83104, 1306684, 21283504, 356648125, 6100611232, 105634585546, 1845124077000, 32368064972555, 568794055227200, 9991239094888864, 175142529040285920, 3060545399532144497, 53279047286232892928, 923884653765128839312, 15965368274611453269820
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 420*x^4 + 5779*x^5 + 83104*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 114*x^2 + 1252*x^3 + 14775*x^4 + 193956*x^5 +...
A(-x*A(x)^12)^4 = 1 - 4*x - 26*x^2 - 148*x^3 - 2415*x^4 - 33192*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213104
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5.
Original entry on oeis.org
1, 1, 5, 40, 360, 3820, 43651, 543240, 7146185, 98885725, 1420274645, 21037156031, 319127602075, 4935547265370, 77525696636995, 1233356748777015, 19829269320322346, 321631227310756885, 5255920261950786655, 86436636022328320125, 1429253483704685851315
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +...
A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A002295,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213103,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213098
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.
Original entry on oeis.org
1, 1, 2, 11, 56, 401, 2960, 23909, 199324, 1704937, 14871560, 131002444, 1162055526, 10330588405, 91813523884, 814261196562, 7195489202430, 63317110066321, 554812081610114, 4845145547265182, 42242647963009666, 368598374017590156, 3228911122031762918
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 56*x^4 + 401*x^5 + 2960*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 146*x^3 + 861*x^4 + 5772*x^5 + 42206*x^6 +...
A(-x*A(x)^6)^2 = 1 - 2*x - 7*x^2 - 20*x^3 - 172*x^4 - 1202*x^5 - 9766*x^6 -...
Cf.
A000108,
A001764,
A002293,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213099,
A213100,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^6]^2 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213099
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^7)^3.
Original entry on oeis.org
1, 1, 3, 18, 112, 909, 7833, 74603, 740541, 7656219, 81187518, 878435208, 9647220024, 107137240686, 1199914011387, 13521738420240, 153051832116378, 1737562815056865, 19762347822563532, 224970273310192579, 2561375647064514444, 29149168085832027732
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 112*x^4 + 909*x^5 + 7833*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2079*x^4 + 16611*x^5 + 142702*x^6 +...
A(-x*A(x)^7)^3 = 1 - 3*x - 9*x^2 - 31*x^3 - 318*x^4 - 2586*x^5 - 25969*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213100,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^7]^3 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^7,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213100
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^3.
Original entry on oeis.org
1, 1, 3, 24, 181, 1893, 20601, 245176, 3018669, 38198478, 493218343, 6441378129, 84807054552, 1120545910725, 14820493111536, 195812569428897, 2580287366558579, 33878771120862777, 443012040333754728, 5770422757461475027, 74931929672784252306
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 181*x^4 + 1893*x^5 + 20601*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 63*x^2 + 516*x^3 + 4563*x^4 + 45207*x^5 + 486579*x^6 +...
A(-x*A(x)^9)^3 = 1 - 3*x - 15*x^2 - 64*x^3 - 798*x^4 - 8277*x^5 - 99411*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^3 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213105
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^6.
Original entry on oeis.org
1, 1, 6, 57, 614, 7716, 104322, 1529385, 23689968, 385885521, 6531397090, 114147452526, 2045979734964, 37435147640010, 696431496524796, 13134442980269397, 250527556214516892, 4824098879117797749, 93639919777995946446, 1830133457257882605430
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 57*x^3 + 614*x^4 + 7716*x^5 + 104322*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 138*x^2 + 1696*x^3 + 21723*x^4 + 292836*x^5 +...
A(-x*A(x)^12)^6 = 1 - 6*x - 21*x^2 - 146*x^3 - 1959*x^4 - 25056*x^5 -...
-
m = 20; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^6 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^6,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213225
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^4)).
Original entry on oeis.org
1, 1, 2, 6, 20, 76, 313, 1375, 6337, 30243, 148129, 739172, 3737993, 19077868, 97955307, 504707999, 2604312205, 13436676965, 69229324721, 355854322633, 1823672937884, 9314227843463, 47406130512872, 240498260267049, 1216833204738419, 6146116088495029, 31030233400282749
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 76*x^5 + 313*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 816*x^5 + 3468*x^6 +...
1/A(-x*A(x)^4) = 1 + x + 3*x^2 + 9*x^3 + 35*x^4 + 146*x^5 + 656*x^6 +...
-
terms = 26; A[] = 1; Do[A[x] = 1/(1-x/A[-x*A[x]^4]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 23 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^4, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213226
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^5)).
Original entry on oeis.org
1, 1, 2, 7, 27, 122, 607, 3208, 17688, 99803, 571238, 3292738, 19001315, 109303307, 624615928, 3537913240, 19843769848, 110273489737, 608712132055, 3355449334452, 18624818099047, 105191779542849, 610586100129734, 3662333209225714, 22652502251884322
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 27*x^4 + 122*x^5 + 607*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 380*x^4 + 1801*x^5 + 9045*x^6 +...
1/A(-x*A(x)^5) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 336*x^5 + 1805*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^5, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213228
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)^2).
Original entry on oeis.org
1, 1, 3, 14, 73, 440, 2862, 19991, 146939, 1125413, 8896018, 72067978, 595097838, 4987609871, 42290465703, 361845473658, 3117830204185, 27009650432888, 234932107635587, 2049479335366836, 17915253987741538, 156799716352350344, 1373180896765862962
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 73*x^4 + 440*x^5 + 2862*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1188*x^4 + 7656*x^5 + 51583*x^6 +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 268*x^4 + 1750*x^5 + 12422*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 17 results.
Comments