A213091
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^2).
Original entry on oeis.org
1, 1, 1, 2, 4, 11, 31, 98, 317, 1070, 3685, 12928, 45924, 164552, 593398, 2148288, 7796846, 28328601, 102948125, 373955584, 1357252616, 4921292287, 17828236695, 64546901169, 233660589210, 846258569786, 3068523234989, 11147449003438, 40600425590874, 148330067463010
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 31*x^6 + 98*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 13*x^4 + 34*x^5 + 96*x^6 + 296*x^7 +...
A(-x*A(x)^2) = 1 - x - x^2 - x^3 - 4*x^4 - 10*x^5 - 34*x^6 - 107*x^7 -...
-
nmax = 29; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[(-x) A[x]^2]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^2,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213094
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^4)^2.
Original entry on oeis.org
1, 1, 2, 7, 26, 123, 622, 3490, 20468, 125643, 792606, 5118050, 33612998, 223770400, 1505528080, 10213807498, 69746716716, 478693572991, 3298184837434, 22790090901504, 157803590073220, 1094189186549354, 7593267782966708, 52713912426435111, 365948276764762712
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 123*x^5 + 622*x^6 + 3490*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1112*x^5 + 5614*x^6 +...
A(-x*A(x)^4)^2 = 1 - 2*x - 3*x^2 - 6*x^3 - 38*x^4 - 180*x^5 - 1095*x^6 -...
-
nmax = 24; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^4]^2) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^4,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213095
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^5)^2.
Original entry on oeis.org
1, 1, 2, 9, 40, 242, 1528, 10664, 76956, 575245, 4395910, 34131621, 268146598, 2122399923, 16884293154, 134689290877, 1075641369024, 8588548510081, 68496446989330, 545303352881863, 4331918361300882, 34337864000400360, 271657823631727330, 2146133623039711577
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 123*x^5 + 622*x^6 + 3490*x^7 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 95*x^3 + 485*x^4 + 2801*x^5 + 17560*x^6 +...
A(-x*A(x)^5)^2 = 1 - 2*x - 5*x^2 - 12*x^3 - 93*x^4 - 550*x^5 - 3981*x^6 -...
-
m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^5 + O[x]^m]^2 // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^5,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213092
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^3).
Original entry on oeis.org
1, 1, 1, 3, 8, 31, 120, 511, 2234, 9988, 45497, 208435, 959496, 4414091, 20252947, 92586100, 421351615, 1910531192, 8647504950, 39194735661, 178643040883, 822295086652, 3836023988259, 18167435295220, 87268076036356, 423657019406289, 2067868784722846
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 8*x^4 + 31*x^5 + 120*x^6 + 511*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 16*x^3 + 48*x^4 + 171*x^5 + 664*x^6 + 2760*x^7 +...
A(-x*A(x)^3) = 1 - x - 2*x^2 - 3*x^3 - 14*x^4 - 50*x^5 - 213*x^6 - 915*x^7 -...
-
nmax = 26; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^3]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^3,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213093
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^4).
Original entry on oeis.org
1, 1, 1, 4, 13, 62, 297, 1523, 8091, 43243, 234347, 1267141, 6814076, 36368431, 192079140, 1006805203, 5262612068, 27656507707, 147973596219, 815825605806, 4662818005761, 27504894986209, 165036600363916, 989160502170958, 5829789341752240, 33444482725193880
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 13*x^4 + 62*x^5 + 297*x^6 + 1523*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 119*x^4 + 516*x^5 + 2462*x^6 +...
A(-x*A(x)^4) = 1 - x - 3*x^2 - 6*x^3 - 31*x^4 - 141*x^5 - 697*x^6 - 3641*x^7 -...
-
nmax = 25; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[-x A[x]^4]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^4,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213101
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.
Original entry on oeis.org
1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213102,
A213103,
A213104,
A213105.
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213102
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^4.
Original entry on oeis.org
1, 1, 4, 30, 240, 2433, 26388, 315726, 3958452, 51863952, 698988716, 9637772716, 135161761860, 1920878419569, 27583547221596, 399310273694328, 5817100622299116, 85152975761167179, 1251046169511714720, 18428780031111768466, 271964652432415737596
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 240*x^4 + 2433*x^5 + 26388*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 642*x^3 + 6030*x^4 + 61551*x^5 + 670344*x^6 +...
A(-x*A(x)^9)^4 = 1 - 4*x - 14*x^2 - 64*x^3 - 797*x^4 - 8188*x^5 - 104090*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213103,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213103
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^4.
Original entry on oeis.org
1, 1, 4, 42, 420, 5779, 83104, 1306684, 21283504, 356648125, 6100611232, 105634585546, 1845124077000, 32368064972555, 568794055227200, 9991239094888864, 175142529040285920, 3060545399532144497, 53279047286232892928, 923884653765128839312, 15965368274611453269820
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 420*x^4 + 5779*x^5 + 83104*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 114*x^2 + 1252*x^3 + 14775*x^4 + 193956*x^5 +...
A(-x*A(x)^12)^4 = 1 - 4*x - 26*x^2 - 148*x^3 - 2415*x^4 - 33192*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213104
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5.
Original entry on oeis.org
1, 1, 5, 40, 360, 3820, 43651, 543240, 7146185, 98885725, 1420274645, 21037156031, 319127602075, 4935547265370, 77525696636995, 1233356748777015, 19829269320322346, 321631227310756885, 5255920261950786655, 86436636022328320125, 1429253483704685851315
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +...
A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A002295,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213100,
A213101,
A213102,
A213103,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213098
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.
Original entry on oeis.org
1, 1, 2, 11, 56, 401, 2960, 23909, 199324, 1704937, 14871560, 131002444, 1162055526, 10330588405, 91813523884, 814261196562, 7195489202430, 63317110066321, 554812081610114, 4845145547265182, 42242647963009666, 368598374017590156, 3228911122031762918
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 56*x^4 + 401*x^5 + 2960*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 146*x^3 + 861*x^4 + 5772*x^5 + 42206*x^6 +...
A(-x*A(x)^6)^2 = 1 - 2*x - 7*x^2 - 20*x^3 - 172*x^4 - 1202*x^5 - 9766*x^6 -...
Cf.
A000108,
A001764,
A002293,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213099,
A213100,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^6]^2 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
Showing 1-10 of 25 results.
Comments