A213103 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^4.
1, 1, 4, 42, 420, 5779, 83104, 1306684, 21283504, 356648125, 6100611232, 105634585546, 1845124077000, 32368064972555, 568794055227200, 9991239094888864, 175142529040285920, 3060545399532144497, 53279047286232892928, 923884653765128839312, 15965368274611453269820
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 420*x^4 + 5779*x^5 + 83104*x^6 +... Related expansions: A(x)^12 = 1 + 12*x + 114*x^2 + 1252*x^3 + 14775*x^4 + 193956*x^5 +... A(-x*A(x)^12)^4 = 1 - 4*x - 26*x^2 - 148*x^3 - 2415*x^4 - 33192*x^5 -...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^4 + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments