A213104 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5.
1, 1, 5, 40, 360, 3820, 43651, 543240, 7146185, 98885725, 1420274645, 21037156031, 319127602075, 4935547265370, 77525696636995, 1233356748777015, 19829269320322346, 321631227310756885, 5255920261950786655, 86436636022328320125, 1429253483704685851315
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +... Related expansions: A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +... A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..400
Crossrefs
Programs
-
Mathematica
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments