A213249 Triangle T(n,k) of numbers of distinct shapes under rotation of non-extendable (complete) non-self-adjacent simple paths within a square lattice bounded by rectangles with nodal dimensions n and k, n >= k >= 2.
2, 8, 16, 18, 64, 134, 34, 170, 706, 1854, 60, 398, 2346, 13198, 41478, 102, 880, 6832, 55454, 382116, 1424988
Offset: 2
Examples
T(2,2) = The number of rotationally distinct complete non-self-adjacent simple path shapes within a 2 X 2 node rectangle.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Crossrefs
Cf. A213106.
Formula
Let T(n,k) denote an element of the triangle then the following recurrence relations appear to hold:
T(n, 2) - T(n-1, 2) - 2*A000045(n+1) = 0, n >= 3,
T(n, 3) - 2*T(n-1, 3) - T(n-4, 3) - 4*(n+11) = 0, n >= 7.
Comments