A213127 Polylogarithm li(-n,-1/4) multiplied by (5^(n+1))/4.
1, -1, -3, -1, 69, 455, -1155, -50065, -334155, 4107095, 112058925, 491352575, -24429589275, -535893782425, 606194735325, 249291355871375, 4380933801391125, -56204145098271625, -4031655689182933875
Offset: 0
Keywords
Examples
polylog(-5,-1/4)*5^6/4 = 455
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..100
- OEIS-Wiki, Eulerian polynomials
Programs
-
Maple
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*4^k, k=0..n),n=0..18); # Peter Luschny, Apr 21 2013
-
Mathematica
a[0] = 1; a[n_] := PolyLog[-n, -1/4] * 5^(n+1)/4; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 29 2018 *)
-
PARI
/* see A212846; run limnpq(nmax,1,4) */
-
PARI
x='x+O('x^66); Vec(serlaplace( 5/(4+exp(5*x)) )) \\ Joerg Arndt, Apr 21 2013
-
PARI
a(n) = sum(k=0, n, k!*(-1)^k*5^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
Formula
See formula in A212846, setting p=1,q=4
From Peter Bala, Jun 24 2012: (Start)
E.g.f.: A(x) = 5/(4 + exp(5*x)) = 1 - x - 3*x^2/2! - x^3/3! + 69*x^4/4! + ....
The compositional inverse (A(-x) - 1)^(-1) = x + 3*x^2/2 + 13*x^3/3 + 51*x^4/4 + 205*x^5/5 + ... is the logarithmic generating function for A015521.
(End)
G.f.: 1/Q(0), where Q(k) = 1 + x*(k+1)/( 1 - 4*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2013
a(n) = Sum_{k=0..n} k! * (-1)^k * 5^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
a(n) ~ n! * (log(2) * cos(n*arctan(Pi/(2*log(2)))) - Pi * sin(n*arctan(Pi/(2*log(2))))/2) * 5^(n+1) / (Pi^2 + 4*log(2)^2)^(1 + n/2). - Vaclav Kotesovec, May 17 2022
Comments