cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213133 Polylogarithm li(-n,-1/10) multiplied by (11^(n+1))/10.

Original entry on oeis.org

1, -1, -9, -61, -9, 9659, 197631, 1388099, -51302169, -2339721781, -41290278129, 536297904659, 64956862241271, 2152254297009179, 6320179650231711, -3288155212484644381, -187761119883430045689
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=1,q=10.

Examples

			polylog(-5,-1/10)*11^6/10 = 9659.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -1/10] 11^(n + 1)/10; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 1, 10)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-1)^k*11^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=1,q=10.
a(n) = Sum_{k=0..n} k! * (-1)^k * 11^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022

A213135 Polylogarithm li(-n,-2/7) multiplied by (9^(n+1))/7.

Original entry on oeis.org

1, -2, -10, 6, 870, 7878, -90810, -3599514, -20802330, 1466193798, 42164160390, -227736774234, -44798359213530, -896477167975482, 32992662466363590, 2308652347666959846, 16747450938362727270, -3885313022633595475962
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=7.

Examples

			polylog(-5,-2/7)*9^6/7 = 7878.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -2/7] 9^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 2, 7)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-2)^k*9^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=2,q=7.
a(n) = Sum_{k=0..n} k! * (-2)^k * 9^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
Showing 1-2 of 2 results.