cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213135 Polylogarithm li(-n,-2/7) multiplied by (9^(n+1))/7.

Original entry on oeis.org

1, -2, -10, 6, 870, 7878, -90810, -3599514, -20802330, 1466193798, 42164160390, -227736774234, -44798359213530, -896477167975482, 32992662466363590, 2308652347666959846, 16747450938362727270, -3885313022633595475962
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=7.

Examples

			polylog(-5,-2/7)*9^6/7 = 7878.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -2/7] 9^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 2, 7)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-2)^k*9^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=2,q=7.
a(n) = Sum_{k=0..n} k! * (-2)^k * 9^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022

A213137 Polylogarithm li(-n,-3/4) multiplied by (7^(n+1))/4.

Original entry on oeis.org

1, -3, -3, 69, 285, -6123, -56883, 1103109, 19251645, -320851083, -9828858963, 130009042149, 7019067151005, -62927791491243, -6646083378845043, 24719268064533189, 8013257547754474365, 22024516916447897397
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=4.

Examples

			polylog(-5,-3/4)*7^6/4 = -6123.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/4] 7^(n + 1)/4; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 4)

Formula

See formula in A212846, setting p=3,q=4.
Showing 1-2 of 2 results.