A213167 a(n) = n! - (n-2)!.
1, 5, 22, 114, 696, 4920, 39600, 357840, 3588480, 39553920, 475372800, 6187104000, 86699289600, 1301447347200, 20835611596800, 354379753728000, 6381450915840000, 121289412980736000, 2426499634470912000
Offset: 2
Crossrefs
Programs
-
Mathematica
Table[n! - (n - 2)!, {n, 2, 20}] #[[3]]-#[[1]]&/@Partition[Range[0,20]!,3,1] (* Harvey P. Dale, Aug 10 2023 *)
-
Maxima
A213167(n):=n!-(n-2)!$ makelist(A213167(n),n,2,30); /* Martin Ettl, Nov 03 2012 */
-
Scheme
(define (A213167 n) (- (A000142 n) (A000142 (- n 2)))) ;; Antti Karttunen, May 07 2015
Formula
a(n) = n! - (n-2)!.
G.f.: (1/G(0) - 1 - x)/x^2 where G(k) = 1 - x/(x - 1/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 13 2012
G.f.: (1+x)/x^2*(1/Q(0)-1), where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*Q(0), where Q(k)= 1 - 1/( (k+1)*(k+2) - x*(k+1)^2*(k+2)^2*(k+3)/(x*(k+1)*(k+2)*(k+3) - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
Comments