cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213168 a(n) = n!/2 - (n-1)! - n + 2.

Original entry on oeis.org

0, 0, 4, 33, 236, 1795, 15114, 141113, 1451512, 16329591, 199583990, 2634508789, 37362124788, 566658892787, 9153720575986, 156920924159985, 2845499424767984, 54420176498687983, 1094805903679487982, 23112569077678079981, 510909421717094399980
Offset: 2

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Row sums of A142706 for k=1..n-1.

Crossrefs

Cf. A001286.
Cf. A200748 (considered as a triangular array).

Programs

  • Magma
    [Factorial(n)/2-Factorial(n-1)-n+2: n in [2..25]]; // Vincenzo Librandi, Sep 09 2016
  • Maple
    f:=gfun:-rectoproc({2*(n-3)*a(n) - (2*n^2-6*n+4)*a(n-1)- 2*(n-3)*(n-2)^2, a(2)=0,a(3)=0},a(n),remember): map(f, [$2..22]); # Georg Fischer, Aug 25 2021
  • Mathematica
    Table[n!/2 - (n - 1)! - n + 2, {n, 2, 20}]
  • Maxima
    A213168(n):=n!/2-(n-1)!-n+2$
    makelist(A213168(n),n,2,30); /* Martin Ettl, Nov 03 2012 */
    

Formula

a(n) = A001286(n-1) - n + 2. - Anton Zakharov, Sep 08 2016
D-finite with recurrence: 2*(n-3)*a(n) - (2*n^2-6*n+4)*a(n-1)- 2*(n-3)*(n-2)^2 = 0. - Georg Fischer, Aug 25 2021
E.g.f.: 1/(2-2*x)+log(1-x)+(2-x)*exp(x). - Alois P. Heinz, Aug 25 2021