A213193 O.g.f.: Sum_{n>=0} (4*n+1)^(4*n+1) * exp(-(4*n+1)^4*x) * x^n / n!.
1, 3124, 191757120, 49208861869440, 33030777426968816640, 45829974166034718596428800, 114009204539207742166715857223680, 462192193445890293982679086838571270144, 2851153321165202191241172917762717987236478976
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + 3124*x + 191757120*x^2 + 49208861869440*x^3 +... where A(x) = exp(-x) + 5^5*x*exp(-5^4*x) + 9^9*exp(-9^4*x)*x^2/2! + 13^13*exp(-13^4*x)*x^3/3! + 17^17*exp(-17^4*x)*x^4/4! + 21^21*exp(-21^4*x)*x^5/5! +... is a power series in x with integer coefficients.
Programs
-
Mathematica
Table[1/n!*Sum[(-1)^(n-k)*Binomial[n,k]*(4*k+1)^(4*n+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *) Table[Sum[Binomial[4*n+1,n+k]*4^(n+k)*StirlingS2[n+k,n],{k,0,3*n+1}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
-
PARI
{a(n)=polcoeff(sum(k=0, n, (4*k+1)^(4*k+1)*exp(-(4*k+1)^4*x +x*O(x^n))*x^k/k!), n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
{a(n)=(1/n!)*polcoeff(sum(k=0, n, (4*k+1)^(4*k+1)*x^k/(1+(4*k+1)^4*x +x*O(x^n))^(k+1)), n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
{a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(4*k+1)^(4*n+1))} for(n=0, 20, print1(a(n), ", "))
Formula
a(n) = 1/n! * [x^n] Sum_{k>=0} (4*k+1)^(4*k+1) * x^k / (1 + (4*k+1)^4*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (4*k+1)^(4*n+1).
a(n) ~ n^(3*n+1/2) * 2^(16*n+9/2) / (sqrt(2*Pi*(1-r)) * exp(3*n) * r^(n+1/4) * (4-r)^(3*n+1)), where r = -LambertW(-4*exp(-4)) = 0.0793096051271136564391... . - Vaclav Kotesovec, May 13 2014
Comments