cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).

Original entry on oeis.org

1, 28, 3612, 1064480, 560632400, 462479403072, 550095467201728, 891290348282967040, 1887146395301619304704, 5058811707344107766328320, 16746136671945501439084657664, 67088193422344140016282100785152, 319900900946743851959321101768511488
Offset: 0

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
  • PARI
    for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...

A220955 O.g.f.: Sum_{n>=0} (2*n+1)^(2*n+1) * exp(-(2*n+1)^2*x) * x^n / n!.

Original entry on oeis.org

1, 26, 1320, 99288, 9901920, 1230768704, 183260197120, 31800433551744, 6301891570411008, 1404224096732154880, 347532097449969496064, 94584986134590717358080, 28076463606243146379018240, 9027122730610037995425792000, 3125219575155651450096795648000
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2013

Keywords

Comments

From Vaclav Kotesovec, May 13 2014: (Start)
Generally, for p>1, a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (p*k+1)^(p*n+1) = Sum_{k=0..(p-1)*n+1} p^(n+k) * binomial(p*n+1,n+k) * stirling2(n+k,n).
a(n) ~ n^(n*p-n+1/2) * p^(2*p*n+2+1/p) / (sqrt(2*Pi*(1-r)) * exp((p-1)*n) * r^(n+1/p) * (p-r)^(n*p-n+1)), where r = -LambertW(-p*exp(-p)).
(End)

Examples

			O.g.f.: A(x) = 1 + 26*x + 1320*x^2 + 99288*x^3 + 9901920*x^4 +...
where A(x) = exp(-x) + 3^3*exp(-3^2*x)*x + 5^5*exp(-5^2*x)*x^2/2! + 7^7*exp(-7^2*x)*x^3/3! + 9^9*exp(-9^2*x)*x^4/4! + 11^11*exp(-11^2*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[1/n! * Sum[(-1)^(n-k)*Binomial[n,k] * (2*k+1)^(2*n+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
    Table[Sum[Binomial[2*n+1,n+k]*2^(n+k)*StirlingS2[n+k,n],{k,0,n+1}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (2*k+1)^(2*k+1)*exp(-(2*k+1)^2*x +x*O(x^n))*x^k/k!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, (2*k+1)^(2*k+1)*x^k/(1+(2*k+1)^2*x +x*O(x^n))^(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(2*k+1)^(2*n+1))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = 1/n! * [x^n] Sum_{k>=0} (2*k+1)^(2*k+1) * x^k / (1 + (2*k+1)^2*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (2*k+1)^(2*n+1).
a(n) = Sum_{k=0..n+1} 2^(n+k) * binomial(2*n+1,n+k) * stirling2(n+k,n). - Vaclav Kotesovec, May 13 2014
a(n) ~ n^(n+1/2) * 2^(4*n+5/2) / (sqrt(2*Pi*(1-r)) * exp(n) * r^(n+1/2) * (2-r)^(n+1)), where r = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775 = -r) . - Vaclav Kotesovec, May 13 2014

A221214 O.g.f.: Sum_{n>=0} (3*n+1)^(3*n+1) * exp(-(3*n+1)^3*x) * x^n / n!.

Original entry on oeis.org

1, 255, 395388, 1525953330, 10977340509135, 126827739333023274, 2148335345336441463090, 50163717301669569182864400, 1544377393328765493716910877185, 60615459491155396034172113103266025, 2954227738557038665136475801709196246304
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + 255*x + 395388*x^2 + 1525953330*x^3 + 10977340509135*x^4 +...
where A(x) = exp(-x) + 4^4*x*exp(-4^3*x) + 7^7*exp(-7^3*x)*x^2/2! + 10^10*exp(-10^3*x)*x^3/3! + 13^13*exp(-13^3*x)*x^4/4! + 16^16*exp(-16^3*x)*x^5/5! +... is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[1/n!*Sum[(-1)^(n-k)*Binomial[n,k]*(3*k+1)^(3*n+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
    Table[Sum[Binomial[3*n+1,n+k]*3^(n+k)*StirlingS2[n+k,n],{k,0,2*n+1}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (3*k+1)^(3*k+1)*exp(-(3*k+1)^3*x +x*O(x^n))*x^k/k!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, (3*k+1)^(3*k+1)*x^k/(1+(3*k+1)^3*x +x*O(x^n))^(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(3*k+1)^(3*n+1))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = 1/n! * [x^n] Sum_{k>=0} (3*k+1)^(3*k+1) * x^k / (1 + (3*k+1)^3*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (3*k+1)^(3*n+1).
a(n) ~ n^(2*n+1/2) * 3^(6*n+7/3) / (sqrt(2*Pi*(1-r)) * exp(2*n) * r^(n+1/3) * (3-r)^(2*n+1)), where r = -LambertW(-3*exp(-3)) = 0.1785606278779211... (see A226750 = -r) . - Vaclav Kotesovec, May 13 2014
Showing 1-3 of 3 results.