A213198 Number of iterations of the map n -> f(f(f(...f(n)...))) to reach the end of the cycle, where f(n) = A006577(n), the initial number n is not counted.
0, 1, 5, 2, 0, 7, 4, 6, 7, 8, 11, 8, 8, 10, 10, 3, 9, 6, 6, 5, 5, 11, 11, 9, 12, 9, 13, 7, 7, 7, 10, 1, 10, 9, 9, 6, 6, 6, 10, 7, 11, 7, 8, 4, 4, 4, 10, 12, 10, 10, 10, 12, 12, 7, 7, 7, 2, 7, 2, 7, 7, 15, 15, 8, 14, 14, 14, 11, 11, 11, 14, 12, 12, 12, 11, 12
Offset: 1
Keywords
Examples
a(3) = 5 because the 5 iterations to reach 1 are A006577(3) = 7; A006577(7) = 16; A006577(16) = 4; A006577(4) = 2; A006577(2) = 1. a(5) = 0 because A006577(5) = 5 is the end of the cycle. a(57) = 2 because A006577(57) = 32 and A006577(32) = 5 is the end of the cycle.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006577.
Programs
-
Maple
for n from 1 to 200 do: m:=n: a:=2: for it from 1 to 1000 while (a>1) do: jj:=0: a:=0: x:=m: if m=5 then printf(`%d, `, it-1): jj:=1: else for i from 1 to 1000 while (x>1) do: if irem(x, 2)=0 then x := x/2: a := a+1: else x := 3*x+1: a := a+1: fi: od: m:=a: fi: od: if jj=0 then printf(`%d, `, it-1): fi: od:
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; f[n_] := Length[Collatz[n]] - 1; Table[k = Rest[NestWhileList[f, n, UnsameQ, All]]; If[k[[1]] == n, 0, k = DeleteCases[k, 0]; If[Length[k] > 1 && k[[-1]] == k[[-2]], k = Most[k]]; Length[k]], {n, 100}] (* T. D. Noe, Mar 01 2013 *)
Comments