A213224 Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 1, 3, 1, 4, 7, 1, 3, 13, 5, 1, 4, 31, 5, 31, 1, 3, 9, 13, 11, 9, 1, 7, 7, 5, 11, 7, 127, 1, 3, 9, 16, 2801, 7, 1093, 17, 1, 4, 307, 5, 25, 36, 19531, 32, 73, 1, 3, 27, 5, 30941, 9, 29, 32, 757, 11, 1, 3, 7, 16, 88741, 63, 43, 64, 19, 44, 23
Offset: 1
Examples
A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2). Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 4, 3, 4, 3, 7, 3, 4, ... 7, 13, 31, 9, 7, 9, 307, 27, ... 5, 5, 13, 5, 16, 5, 5, 16, ... 31, 11, 11, 2801, 25, 30941, 88741, 151, ... 9, 7, 7, 36, 9, 63, 7, 7, ... 127, 1093, 19531, 29, 43, 5229043, 25646167, 701, ... 17, 32, 32, 64, 32, 32, 128, 17, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..45, flattened
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n, i) option remember; divisors(ithprime(i)^n-1) minus U(n-1, i) end: U:= proc(n, i) option remember; `if`(n=0, {}, M(n, i) union U(n-1, i)) end: A:= (n, k)-> min(M(n, k)[]): seq(seq(A(n, d+1-n), n=1..d), d=1..14);
-
Mathematica
M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Formula
A(n,k) = min(M(n,k)) with M(n,k) = {d : d|(prime(k)^n-1)} \ U(n-1,k) and U(n,k) = M(n,k) union U(n-1,k) for n>0, U(0,k) = {}.
Comments