A213247 Number of nonzero elements in GF(2^n) that are 11th powers.
1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1024).
Crossrefs
Programs
-
Magma
[(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
Maple
A213247:=n->(2^n-1)/igcd(2^n-1,11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Mathematica
Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
-
PARI
{ for(n=1,36,if(n%10,a=2^n-1,a=(2^n-1)/11);print1(a,", ")) } \\ K. Spage, Aug 23 2014
Formula
a(n) = M / GCD( M, 11 ) where M=2^n-1.
From Colin Barker, Aug 24 2014: (Start)
a(n) = 1025*a(n-10)-1024*a(n-20).
G.f.: x*(512*x^18 +768*x^17 +896*x^16 +960*x^15 +992*x^14 +1008*x^13 +1016*x^12 +1020*x^11 +1022*x^10 +93*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (1024*x^20 -1025*x^10 +1).
(End)
a(n) = (2^n - 1)/11 if n is divisible by 10, 2^n - 1 otherwise. - Robert Israel, Aug 24 2014