A213256 p(11n+6) where p(k) = number of partitions of k = A000041(k).
11, 297, 3718, 31185, 204226, 1121505, 5392783, 23338469, 92669720, 342325709, 1188908248, 3913864295, 12292341831, 37027355200, 107438159466, 301384802048, 819876908323, 2168627105469, 5590088317495, 14070545699287, 34643126322519, 83561103925871, 197726516681672, 459545750448675, 1050197489931117
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- K. Ono, On the Circular Summation of the Eleventh Powers of Ramanujan's Theta Function, Journal of Number Theory, Volume 76, Issue 1, May 1999, Pages 62-65.
- Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6 1969 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
Programs
-
Mathematica
PartitionsP[11Range[0,30]+6] (* Paolo Xausa, Nov 08 2023 *)
-
PARI
a(n) = numbpart(11*n+6); \\ Michel Marcus, Jan 07 2015
Comments