cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.
Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015

Examples

			G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...
G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
		

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> numbpart(5*n+4)/5:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015
  • Mathematica
    a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
    
  • PARI
    {a(n) = numbpart(5*n + 4) / 5};
    
  • PARI
    a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ Paul D. Hanna

Formula

a(n) = (1/5)*A000041(5n+4).
G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011
a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013
Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015
Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015
a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016

A076394 a(n) = p(11n+6)/11 where p(n) = number of partitions of n (A000041).

Original entry on oeis.org

1, 27, 338, 2835, 18566, 101955, 490253, 2121679, 8424520, 31120519, 108082568, 355805845, 1117485621, 3366123200, 9767105406, 27398618368, 74534264393, 197147918679, 508189847045, 1279140518117, 3149375120229, 7596463993261
Offset: 0

Views

Author

Jeff Burch, Nov 07 2002

Keywords

Comments

That p(11n+6) == 0 (mod 11) is one of the congruences stated by Ramanujan. - Omar E. Pol, Jan 18 2013

Crossrefs

Programs

  • Maple
    seq(combinat:-numbpart(11*n+6)/11, n=0..30); # Robert Israel, Jan 07 2015
  • Mathematica
    PartitionsP[(11*Range[0,30]+6)]/11 (* Harvey P. Dale, May 28 2015 *)
  • PARI
    a(n) = numbpart(11*n+6)/11; \\ Michel Marcus, Jan 07 2015

Formula

a(n) = A000041(A017461(n))/11 = A213256(n)/11. - Omar E. Pol, Jan 18 2013

A213261 a(n) = p(7*n + 5), where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

7, 77, 490, 2436, 10143, 37338, 124754, 386155, 1121505, 3087735, 8118264, 20506255, 49995925, 118114304, 271248950, 607163746, 1327710076, 2841940500, 5964539504, 12292341831, 24908858009, 49686288421, 97662728555, 189334822579, 362326859895, 684957390936, 1280011042268, 2366022741845, 4328363658647, 7840656226137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 7 (see A071746).

Crossrefs

Programs

Formula

a(n) = A000041(A017041(n)). - Omar E. Pol, Jan 18 2013
a(n) = 7 * A071746(n). - Joerg Arndt, Nov 06 2016

A213260 p(5n+4) where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 5 (see A071734).

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[5n+4],{n,0,40}] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
    
  • Python
    from sympy.functions import partition
    def a(n): return partition(5*n+4)
    print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021

Formula

a(n) = A000041(A016897(n)). - Omar E. Pol, Jan 18 2013

A220503 spt(13n+6) where spt(n) = A092269(n).

Original entry on oeis.org

26, 1820, 39546, 494702, 4474756, 32347380, 198063060, 1065041120, 5155845968, 22871059718, 94204920680, 363981624370, 1329826483453, 4624153352104, 15385030362884, 49194117590072, 151738308808580, 452922550115880, 1311857021146256
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

a(n) is divisible by 13 (see A220513).

Crossrefs

Formula

a(n) = A092269(A186113(n)).

A023922 Theta series of A*_10 lattice.

Original entry on oeis.org

1, 0, 0, 0, 0, 22, 0, 0, 0, 110, 0, 110, 330, 0, 660, 924, 990, 0, 0, 0, 2662, 0, 1980, 4840, 0, 6534, 7260, 9460, 0, 0, 0, 15840, 0, 10230, 21780, 0, 27830, 32670, 33660, 0, 0, 0, 50820, 0, 30140, 71236, 0, 84700, 87120, 99000, 0, 0, 0, 136840, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 22*q^5 + 110*q^9 + 110*q^11 + 330*q^12 + ... - _Sean A. Irvine_, Jun 16 2019
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Formula

G.f.: eta^11(q)/eta(q^11) + 800*q^5*eta^11(q^11)/eta(11) - 9*P11(q)*eta^11(q) + (308/3)*A(q) + (22/3)*B(q), where P11(q) is the g.f. for A213256, A(q) is the g.f. for A065103, B(q) is the g.f. for A065099, and eta is the Dedekind eta function [from Ono]. - Sean A. Irvine, Jun 16 2019

Extensions

More terms from Sean A. Irvine, Jun 16 2019
Showing 1-6 of 6 results.