cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.
Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015

Examples

			G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...
G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
		

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> numbpart(5*n+4)/5:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015
  • Mathematica
    a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
    
  • PARI
    {a(n) = numbpart(5*n + 4) / 5};
    
  • PARI
    a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ Paul D. Hanna

Formula

a(n) = (1/5)*A000041(5n+4).
G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011
a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013
Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015
Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015
a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016

A213261 a(n) = p(7*n + 5), where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

7, 77, 490, 2436, 10143, 37338, 124754, 386155, 1121505, 3087735, 8118264, 20506255, 49995925, 118114304, 271248950, 607163746, 1327710076, 2841940500, 5964539504, 12292341831, 24908858009, 49686288421, 97662728555, 189334822579, 362326859895, 684957390936, 1280011042268, 2366022741845, 4328363658647, 7840656226137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 7 (see A071746).

Crossrefs

Programs

Formula

a(n) = A000041(A017041(n)). - Omar E. Pol, Jan 18 2013
a(n) = 7 * A071746(n). - Joerg Arndt, Nov 06 2016

A278559 a(n) = A000041(25*n + 24).

Original entry on oeis.org

1575, 173525, 7089500, 169229875, 2841940500, 37027355200, 397125074750, 3646072432125, 29454549941750, 213636919820625, 1412749565173450, 8620496275465025, 49005643635237875, 261578907351144125, 1319510599727473500, 6324621482504294325, 28938037257084798150
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2016

Keywords

Examples

			a(4) = 5^2*63*A160460(4) + 5^5*52*A278555(3) + 5^7*63*A278556(2) + 5^10*6*A278557(1) + 5^12*A278558(0) = 771750 + 103512500 + 1028671875 + 1464843750 + 244140625 = 2841940500.
		

Crossrefs

Formula

a(n) = A213260(5*n + 4) = A000041(25*n + 24).
a(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*A278556(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.

A220485 spt(5n+4) where spt(n) = A092269(n).

Original entry on oeis.org

10, 80, 440, 1820, 6545, 20630, 59960, 161840, 412950, 1002435, 2335760, 5246120, 11416820, 24146510, 49795175, 100348950, 198063060, 383516700, 729726660, 1366124700, 2519441030, 4581865140, 8224627160, 14584074770, 25565740130, 44334556890, 76102268520
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

a(n) is divisible by 5 (see A220505).

Crossrefs

Formula

a(n) = A092269(A016897(n)).

A333435 Partition numbers A000041(k*x_n + y_n) are known to be divisible by prime(n); sequence gives the list of y_n.

Original entry on oeis.org

4, 5, 6, 237, 2623, 815655
Offset: 3

Views

Author

Frank Ellermann, Mar 21 2020

Keywords

Comments

Grime notes that Ramanujan's pattern for a(3), a(4), a(5) or prime(3), prime(4), prime(5) cannot be directly extended to prime(6) = 13, and shows solutions for 13, 17, 19.

Examples

			All {partition( 5k+4)} are divisible by prime(3) = 5, so a(3) = 4.
All {partition( 7k+5)} are divisible by prime(4) = 7, so a(4) = 5.
All {partition(11k+6)} are divisible by prime(5) = 11, so a(5) = 6.
		

Crossrefs

Cf. A333436 (y_n), A000040 (primes), A000041 (partitions).
Cf. A071734 (p(5k+4)/5), A071746 (p(7k+5)/7), A076394 (p(11k+6)/11).
Cf. A213260 (p(5k+4)).

A333436 Partition numbers A000041(k*x_n + y_n) are known to be divisible by prime(n); sequence gives the list of x_n.

Original entry on oeis.org

5, 7, 11, 17303, 206839, 1977147619
Offset: 3

Views

Author

Frank Ellermann, Mar 21 2020

Keywords

Comments

Grime notes that Ramanujan's pattern for a(3), a(4), a(5) or prime(3), prime(4), prime(5) cannot be directly extended to prime(6) = 13, and shows solutions for 13, 17, 19.

Examples

			All {partition( 5k+4)} are divisible by prime(3) = 5, so a(3) = 5.
All {partition( 7k+5)} are divisible by prime(4) = 7, so a(4) = 7.
All {partition(11k+6)} are divisible by prime(5) = 11, so a(5) = 11.
		

Crossrefs

Cf. A333435 (x_n), A000040 (primes), A000041 (partitions).
Cf. A071734 (p(5k+4)/5), A071746 (p(7k+5)/7), A076394 (p(11k+6)/11).
Cf. A213260 (p(5k+4)).
Showing 1-6 of 6 results.