cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A282919 a(n) = A000041(49*n + 47).

Original entry on oeis.org

124754, 118114304, 24908858009, 2366022741845, 133978259344888, 5234371069753672, 154043597379576030, 3617712763867604423, 70593393646562135510, 1178875491155735802646, 17229817230617210720599, 224282898599046831034631, 2636785814481962651219075
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 179.

Crossrefs

Cf. A000041, A213261 (p(7*n + 5)), A277958, A278559 (p(25*n + 24)), this sequence (p(49*n + 47)).

Programs

  • Mathematica
    Table[PartitionsP[49n+47],{n,0,12}] (* Indranil Ghosh, Feb 25 2017 *)
  • PARI
    a(n) = numbpart(49*n+47); \\ Indranil Ghosh, Feb 25 2017

Formula

a(n) = A213261(7*n + 6) = A000041(49*n + 47).
a(n) = 2546 * 7^2 * A160528(n) + 48934 * 7^4 * A282920(n-1) + 1418989 * 7^5 * A282921(n-2) + 2488800 * 7^7 * A282922(n-3) + 2394438 * 7^9 * A282923(n-4) + 1437047 * 7^11 * A282924(n-5) + 4043313 * 7^12 * A282925(n-6) + 161744 * 7^15 * A282926(n-7) + 32136 * 7^17 * A282927(n-8) + 31734 * 7^18 * A282928(n-9) + 3120 * 7^20 * A282929(n-10) + 204 * 7^22 * A282930(n-11) + 8 * 7^24 * A282931(n-12) + 7^25 * A282932(n-13) for n >= 13.

A071746 a(n) = p(7n+5)/7 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 11, 70, 348, 1449, 5334, 17822, 55165, 160215, 441105, 1159752, 2929465, 7142275, 16873472, 38749850, 86737678, 189672868, 405991500, 852077072, 1756048833, 3558408287, 7098041203, 13951818365, 27047831797, 51760979985
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Magma
    a:= func< n | NumberOfPartitions((7*n+5)) div 7 >; [ a(n) : n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    Table[PartitionsP[7n+5]/7, {n, 0, 24}] (* Jean-François Alcover, Nov 30 2015 *)
  • PARI
    a(n)=if(n<0, 0, n=7*n+5; polcoeff(1/eta(x+x*O(x^n)),n)/7)
    
  • PARI
    {a(n)=local(A,B); if(n<0, 0, A=x*O(x^n); B=eta(x^7+A); A=eta(x+A); polcoeff( B^3/A^4 +x*7*B^7/A^8, n))} /* Michael Somos, Jan 01 2006 */
    
  • PARI
    a(n) = numbpart(7*n+5)/7; \\ Michel Marcus, Nov 30 2015
    

Formula

a(n) = (1/7)*A000041(7n+5).
a(n) = A000041(A017041(n))/7 = A213261(n)/7. - Omar E. Pol, Jan 18 2013

A160527 Coefficients in the expansion of C^3/B^4, in Watson's notation of page 118.

Original entry on oeis.org

1, 4, 14, 40, 105, 252, 574, 1237, 2568, 5138, 9988, 18893, 34937, 63238, 112370, 196244, 337477, 572024, 956956, 1581321, 2583637, 4176495, 6684820, 10599939, 16661401, 25972485, 40171474, 61672695, 94017765, 142368024, 214211760, 320350725, 476299978
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 252*x^5 + 574*x^6 + ...
G.f. = q^17 + 4*q^41 + 14*q^65 + 40*q^89 + 105*q^113 + 252*q^137 + 574*q^161 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^3 /(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n >= 1} (1 - x^(7*n))^3/(1 - x^n)^4. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(50*n/21)) * 5 / (196*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017

A327770 a(n) = (23 * 7^(2*n) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.

Original entry on oeis.org

1, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247, 440820430855375795936101, 21600201111913414000868947
Offset: 0

Views

Author

Petros Hadjicostas, Sep 24 2019

Keywords

Comments

If p(n) = A000041(n) is the partition function, Watson (1938) proved that p(7^(2*m)*n + a(m)) == 0 mod 7^(m+1) for n >= 0 and m >= 1. (Obviously, this is not always true for m = 0).
For m=1 and n=0, p(7^(2*1)*0 + a(1)) = p(47) = 7^(1+1) * 2546.
For m=1 and n=1, p(7^(2*1)*1 + a(1)) = p(96) = 7^(1+1) * 2410496.
For m=1 and n=2, p(7^(2*1)*2 + a(1)) = p(145) = 7^(1+1) * 508344041.
For m=2 and n=0, p(7^(2*2)*0 + a(2)) = p(2301) = 7^(2+1) * 49629361905981812695622866669844910256876089360.
Essentially the same as A052463. - R. J. Mathar, Oct 08 2019

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 49 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 27 2019 *)
    LinearRecurrence[{50,-49},{1,47},20] (* Harvey P. Dale, Mar 09 2023 *)
  • PARI
    a(n) = (23 * 7^(2*n) + 1)/24; \\ Michel Marcus, Sep 25 2019
    
  • PARI
    Vec((1 - 3*x) / ((1 - x)*(1 - 49*x)) + O(x^20)) \\ Colin Barker, Sep 25 2019

Formula

From Colin Barker, Sep 25 2019: (Start)
G.f.: (1 - 3*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)

A327582 a(n) = (17 * 7^(2*n+1) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.

Original entry on oeis.org

5, 243, 11905, 583343, 28583805, 1400606443, 68629715705, 3362856069543, 164779947407605, 8074217422972643, 395636653725659505, 19386196032557315743, 949923605595308471405, 46546256674170115098843, 2280766577034335639843305, 111757562274682446352321943
Offset: 0

Views

Author

Petros Hadjicostas, Sep 23 2019

Keywords

Comments

If p(n) = A000041(n) is the partition function, Watson (1938) proved that p(7^(2*m+1)*n + a(m)) == 0 mod 7^(m+1) for n >= 0 and m >= 1.
It is well-known that this result is true even for m = 0 (cf. A071746 and the references there).

Examples

			For m=1 and n=0, p(7^(2*1+1)*0 + a(1)) = p(243) = 133978259344888 = 7^2 * 2734250190712.
For m=1 and n=1, p(7^(2*1+1)*1 + a(1)) = p(586) = 224282898599046831034631 = 7^2 * 4577202012225445531319.
		

Crossrefs

Programs

  • PARI
    a(n) = (17 * 7^(2*n+1) + 1)/24; \\ Michel Marcus, Sep 25 2019
    
  • PARI
    Vec((5 - 7*x) / ((1 - x)*(1 - 49*x)) + O(x^15)) \\ Colin Barker, Sep 27 2019

Formula

From Colin Barker, Sep 27 2019: (Start)
G.f.: (5 - 7*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)

A220502 spt(7n+5) where spt(n) = A092269(n).

Original entry on oeis.org

14, 238, 1820, 10486, 48692, 196168, 706671, 2335760, 7185780, 20832168, 57385734, 151261320, 383516700, 939524019, 2231714982, 5155845968, 11614187984, 25565740130, 55096236664, 116437751108, 241655216355, 493152387294, 990688365380
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

a(n) is divisible by 7 (see A220507).

Crossrefs

Formula

a(n) = A092269(A017041(n)).

A277958 Expansion of Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8 in powers of x.

Original entry on oeis.org

1, 8, 44, 192, 726, 2464, 7704, 22521, 62281, 164252, 415796, 1015334, 2401462, 5519640, 12363062, 27047913, 57917068, 121588588, 250638216, 507974950, 1013409244, 1992161935, 3862461694, 7392045512, 13975011909, 26116935550, 48277368020, 88320521108, 159993054081
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2016

Keywords

Examples

			G.f.: 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 + 7704*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^(7*k))^7 /(1 - x^k)^8 , {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

G.f.: Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8.
A213261(n) = 7*A160527(n) + 49*a(n - 1) for n > 0 due to Ramanujan's congruences.
a(n) ~ exp(Pi*sqrt(98*n/21)) / (1372*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017

A327771 a(n) = p(49*n + 47)/49, where p(k) denotes the k-th partition number (i.e., A000041).

Original entry on oeis.org

2546, 2410496, 508344041, 48286178405, 2734250190712, 106823899382728, 3143746885297470, 73830872731991927, 1440681502991063990, 24058683492974200054, 351628923073820626951, 4577202012225445531319, 53811955397591074514675, 577896157936323089053580
Offset: 0

Views

Author

Petros Hadjicostas, Sep 24 2019

Keywords

Comments

Watson (1938), p. 120, proved that p(7*n + 5) == 0 (mod 7) and p(49*n + 47) == 0 (mod 49) for n >= 0, where p() = A000041(). For more general congruence results modulo a power of 7 by George Neville Watson regarding the partition function, see A327582 and A327770.

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[49n+47]/49,{n, 0, 13}] (* Metin Sariyar, Sep 25 2019 *)
  • PARI
    a(n) = numbpart(49*n + 47)/49; \\ Michel Marcus, Sep 25 2019

Formula

a(n) = A000041(49*n + 47)/49.
Showing 1-8 of 8 results.