A282920
Expansion of Product_{k>=1} (1 - x^(7*k))^8/(1 - x^k)^9 in powers of x.
Original entry on oeis.org
1, 9, 54, 255, 1035, 3753, 12483, 38701, 113193, 315013, 839802, 2155905, 5352252, 12894426, 30233558, 69160869, 154677325, 338822547, 728084435, 1536931932, 3190959918, 6523084815, 13142291319, 26118847655, 51244059231, 99322878506, 190306301025
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^8/(1 - x^j)^9: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^8 /(1 - x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^8/(1 - x^j)^9)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^8/(1 - x^j)^9 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282921
Expansion of Product_{k>=1} (1 - x^(7*k))^12/(1 - x^k)^13 in powers of x.
Original entry on oeis.org
1, 13, 104, 637, 3276, 14820, 60697, 229360, 810498, 2705118, 8592857, 26134654, 76476816, 216174700, 592220696, 1576826355, 4090222409, 10357895639, 25653139694, 62235901689, 148108568986, 346176981673, 795569268689, 1799508071426, 4009753651904, 8808973137510
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^12/(1 - x^j)^13: j in [1..30]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^12/(1 - x^k)^13, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30, x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^12/(1 - x^j)^13)) \\ G. C. Greubel, Nov 18 2018
-
m = 30
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(m)
s = prod((1 - x^(7*j))^12/(1 - x^j)^13 for j in (1..m))
list(s) # G. C. Greubel, Nov 18 2018
A282922
Expansion of Product_{n>=1} (1 - x^(7*n))^16/(1 - x^n)^17 in powers of x.
Original entry on oeis.org
1, 17, 170, 1275, 7905, 42619, 206091, 912459, 3753328, 14500320, 53053498, 185046190, 618555931, 1990227519, 6186291009, 18633598578, 54530992072, 155401842842, 432109571275, 1174385295541, 3124445373406, 8148428799893, 20856618453595, 52451748129498
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^16/(1 - x^j)^17: j in [1..30]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^16/(1 - x^k)^17, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(x='x+O('x^30)); Vec(prod(j=1, 30, (1 - x^(7*j))^16/(1 - x^j)^17)) \\ G. C. Greubel, Nov 18 2018
-
m = 30
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(m)
s = prod((1 - x^(7*j))^16/(1 - x^j)^17 for j in (1..m))
s.coefficients() # G. C. Greubel, Nov 18 2018
A282923
Expansion of Product_{n>=1} (1 - x^(7*n))^20/(1 - x^n)^21 in powers of x.
Original entry on oeis.org
1, 21, 252, 2233, 16170, 100926, 560945, 2837398, 13265679, 57989435, 239125579, 936702879, 3505361650, 12590400326, 43572202835, 145770820937, 472764167939, 1490002933265, 4573182416677, 13694526423445, 40076281579264, 114782535792335, 322167257486123, 887188897987819, 2399619923361150, 6380874322337452, 16695968482412345
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^20/(1 - x^j)^21: j in [1..30]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^20/(1 - x^k)^21, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(x='x+O('x^30)); Vec(prod(j=1, 30, (1 - x^(7*j))^20/(1 - x^j)^21)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^20/(1 - x^j)^21 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282924
Expansion of Product_{k>=1} (1 - x^(7*k))^24/(1 - x^k)^25 in powers of x.
Original entry on oeis.org
1, 25, 350, 3575, 29575, 209405, 1312675, 7452201, 38939275, 189537775, 867436570, 3760131375, 15529994130, 61413915500, 233488417752, 856388420815, 3039281123900, 10463551169370, 35024068485525, 114205431037285, 363408170015065, 1130218949978428, 3440267279234290, 10261830946893750, 30029624283800440, 86300123835692431
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^24/(1 - x^j)^25: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^24/(1 - x^k)^25, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^24/(1 - x^j)^25)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^24/(1 - x^j)^25 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282925
Expansion of Product_{k>=1} (1 - x^(7*k))^28/(1 - x^k)^29 in powers of x.
Original entry on oeis.org
1, 29, 464, 5365, 49880, 394632, 2750969, 17296732, 99742368, 534126988, 2681856693, 12722233068, 57373155952, 247218913828, 1022189562610, 4070289420139, 15656921120982, 58336024110584, 211023516790156, 742643172981206, 2547265600634862, 8529351700138885
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^28/(1 - x^j)^29: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^28/(1 - x^k)^29, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^28/(1 - x^j)^29)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^28/(1 - x^j)^29 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282926
Expansion of Product_{k>=1} (1 - x^(7*k))^32/(1 - x^k)^33 in powers of x.
Original entry on oeis.org
1, 33, 594, 7667, 79101, 691119, 5299019, 36518791, 230122266, 1343028082, 7331536586, 37731144564, 184232285897, 857974579385, 3827695162667, 16420097827188, 67948512704413, 271990545250303, 1055719283332541, 3981884465793740, 14621550982740229
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^32/(1 - x^j)^33: j in [1..m]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^32/(1 - x^k)^33, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(m=30, x='x+O('x^m)); Vec(prod(j=1,m, (1 - x^(7*j))^32/(1 - x^j)^33)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^32/(1 - x^j)^33 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282927
Expansion of Product_{k>=1} (1 - x^(7*k))^36/(1 - x^k)^37 in powers of x.
Original entry on oeis.org
1, 37, 740, 10545, 119510, 1142338, 9548849, 71529474, 488650453, 3084466705, 18173253703, 100751920597, 529029597362, 2645187324766, 12651654794629, 58105915432081, 257102694583806, 1099122519498352, 4551159872375703, 18293134887547452
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^36/(1 - x^j)^37: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^36/(1 - x^k)^37, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30, x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^36/(1 - x^j)^37)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^36/(1 - x^j)^37 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
A282928
Expansion of Product_{k>=1} (1 - x^(7*k))^40/(1 - x^k)^41 in powers of x.
Original entry on oeis.org
1, 41, 902, 14063, 173635, 1801745, 16300739, 131814181, 969824701, 6579564585, 41587633402, 246925024493, 1386436741480, 7402293438974, 37755020009290, 184685764132377, 869379223328495, 3949788012868677, 17363552010806127
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^40/(1 - x^j)^41: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^40/(1 - x^k)^41, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(m=30, x='x+O('x^m)); Vec(prod(j=1,m, (1 - x^(7*j))^40/(1 - x^j)^41)) \\ G. C. Greubel, Nov 18 2018
A282929
Expansion of Product_{k>=1} (1 - x^(7*k))^44/(1 - x^k)^45 in powers of x.
Original entry on oeis.org
1, 45, 1080, 18285, 244260, 2733804, 26606745, 230915656, 1819708110, 13198528010, 89041203249, 563420646090, 3366705675744, 19105222953420, 103448715353372, 536621238174195, 2675953974595655, 12866398610335149, 59805282183021050, 269356649381129943, 1177903345233332970, 5010462608512204473, 20765528801742226455
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^44/(1 - x^j)^45: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
-
N:= 30:
gN:= mul((1-x^(7*n))^44/(1-x^n)^45,n=1..N):
S:=series(gN,x,N+1):
seq(coeff(S,x,n),n=1..N); # Robert Israel, Nov 18 2018
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^44/(1 - x^k)^45, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^44/(1 - x^j)^45)) \\ G. C. Greubel, Nov 18 2018
-
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^44/(1 - x^j)^45 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
Showing 1-10 of 13 results.