cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.
Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015

Examples

			G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...
G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
		

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> numbpart(5*n+4)/5:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015
  • Mathematica
    a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
    
  • PARI
    {a(n) = numbpart(5*n + 4) / 5};
    
  • PARI
    a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ Paul D. Hanna

Formula

a(n) = (1/5)*A000041(5n+4).
G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011
a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013
Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015
Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015
a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016

A071746 a(n) = p(7n+5)/7 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 11, 70, 348, 1449, 5334, 17822, 55165, 160215, 441105, 1159752, 2929465, 7142275, 16873472, 38749850, 86737678, 189672868, 405991500, 852077072, 1756048833, 3558408287, 7098041203, 13951818365, 27047831797, 51760979985
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Magma
    a:= func< n | NumberOfPartitions((7*n+5)) div 7 >; [ a(n) : n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    Table[PartitionsP[7n+5]/7, {n, 0, 24}] (* Jean-François Alcover, Nov 30 2015 *)
  • PARI
    a(n)=if(n<0, 0, n=7*n+5; polcoeff(1/eta(x+x*O(x^n)),n)/7)
    
  • PARI
    {a(n)=local(A,B); if(n<0, 0, A=x*O(x^n); B=eta(x^7+A); A=eta(x+A); polcoeff( B^3/A^4 +x*7*B^7/A^8, n))} /* Michael Somos, Jan 01 2006 */
    
  • PARI
    a(n) = numbpart(7*n+5)/7; \\ Michel Marcus, Nov 30 2015
    

Formula

a(n) = (1/7)*A000041(7n+5).
a(n) = A000041(A017041(n))/7 = A213261(n)/7. - Omar E. Pol, Jan 18 2013

A213261 a(n) = p(7*n + 5), where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

7, 77, 490, 2436, 10143, 37338, 124754, 386155, 1121505, 3087735, 8118264, 20506255, 49995925, 118114304, 271248950, 607163746, 1327710076, 2841940500, 5964539504, 12292341831, 24908858009, 49686288421, 97662728555, 189334822579, 362326859895, 684957390936, 1280011042268, 2366022741845, 4328363658647, 7840656226137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 7 (see A071746).

Crossrefs

Programs

Formula

a(n) = A000041(A017041(n)). - Omar E. Pol, Jan 18 2013
a(n) = 7 * A071746(n). - Joerg Arndt, Nov 06 2016

A213256 p(11n+6) where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

11, 297, 3718, 31185, 204226, 1121505, 5392783, 23338469, 92669720, 342325709, 1188908248, 3913864295, 12292341831, 37027355200, 107438159466, 301384802048, 819876908323, 2168627105469, 5590088317495, 14070545699287, 34643126322519, 83561103925871, 197726516681672, 459545750448675, 1050197489931117
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 11 (see A076394).

Crossrefs

Programs

  • Mathematica
    PartitionsP[11Range[0,30]+6] (* Paolo Xausa, Nov 08 2023 *)
  • PARI
    a(n) = numbpart(11*n+6); \\ Michel Marcus, Jan 07 2015

Formula

a(n) = A000041(A017461(n)). - Omar E. Pol, Jan 18 2013

A213260 p(5n+4) where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 5 (see A071734).

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[5n+4],{n,0,40}] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
    
  • Python
    from sympy.functions import partition
    def a(n): return partition(5*n+4)
    print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021

Formula

a(n) = A000041(A016897(n)). - Omar E. Pol, Jan 18 2013

A220513 a(n) = spt(13n+6)/13 where spt(n) = A092269(n).

Original entry on oeis.org

2, 140, 3042, 38054, 344212, 2488260, 15235620, 81926240, 396603536, 1759312286, 7246532360, 27998586490, 102294344881, 355704104008, 1183463874068, 3784162891544, 11672177600660, 34840196162760, 100912078549712, 284295561826160
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

That spt(13n+6) == 0 (mod 13) is one of the congruences stated by George E. Andrews. See theorem 2 in the Andrews' paper. See also A220505 and A220507.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    spt[n_] := b[n, n];
    a[n_] := spt[13 n + 6]/13;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)

Formula

a(n) = A092269(A186113(n))/13 = A220503(n)/13.

A182668 The n-th Fourier coefficient divided by 11 of L_1(tau) defined by A. O. L. Atkin in 1967.

Original entry on oeis.org

1, 27, 338, 2835, 18566, 101955, 490253, 2121679, 8424520, 31120519, 108082568, 355805844, 1117485594, 3366122862, 9767102571, 27398599802, 74534162438, 197147428426, 508187725366, 1279132093597, 3149343999710, 7596355910693, 17974782074306, 41775768918777
Offset: 1

Views

Author

Michael Somos, Dec 24 2012

Keywords

Comments

Atkin (1967) on page 22, equation (30), defines phi(tau) = eta(121*tau) / eta(tau), a modular function which satisfies phi(-1/(121*t)) = 11^(-1)/phi(t), where q = exp(2*Pi*i*t). On page 23, equation (33), he defines L_1(tau) = U phi(tau), where U is a Hecke operator so that the n-th Fourier coefficient of L_1 is the 11*n-th Fourier coefficient of phi. On page 26, he finds that L_1(tau) = 11*g_2(tau) + 2*11^2*g_3(tau) + 11^3*g_4(tau) + 11^4*g_5(tau), where g_2, g_3, g_4, g_5 are functions he previously defined. The n-th Fourier coefficient of L_1 is 11*a(n).
First differs from A076394 at a(12). - Omar E. Pol, Dec 24 2012
The sequence of coefficients of the q-expansion of phi(tau) coincides with the partition function A000041 for the first 120 terms. - N. J. A. Sloane, Dec 24 2012

Examples

			x + 27*x^2 + 338*x^3 + 2835*x^4 + 18566*x^5 + 101955*x^6 + 490253*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[ eta[q^121]/ eta[q]/11, {q, 0, 300}], q][[1 ;; -1 ;; 11]] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n = 11*n - 5; A = x * O(x^n); polcoeff( eta(x^121 + A) / eta(x + A), n) / 11)}

A333435 Partition numbers A000041(k*x_n + y_n) are known to be divisible by prime(n); sequence gives the list of y_n.

Original entry on oeis.org

4, 5, 6, 237, 2623, 815655
Offset: 3

Views

Author

Frank Ellermann, Mar 21 2020

Keywords

Comments

Grime notes that Ramanujan's pattern for a(3), a(4), a(5) or prime(3), prime(4), prime(5) cannot be directly extended to prime(6) = 13, and shows solutions for 13, 17, 19.

Examples

			All {partition( 5k+4)} are divisible by prime(3) = 5, so a(3) = 4.
All {partition( 7k+5)} are divisible by prime(4) = 7, so a(4) = 5.
All {partition(11k+6)} are divisible by prime(5) = 11, so a(5) = 6.
		

Crossrefs

Cf. A333436 (y_n), A000040 (primes), A000041 (partitions).
Cf. A071734 (p(5k+4)/5), A071746 (p(7k+5)/7), A076394 (p(11k+6)/11).
Cf. A213260 (p(5k+4)).

A333436 Partition numbers A000041(k*x_n + y_n) are known to be divisible by prime(n); sequence gives the list of x_n.

Original entry on oeis.org

5, 7, 11, 17303, 206839, 1977147619
Offset: 3

Views

Author

Frank Ellermann, Mar 21 2020

Keywords

Comments

Grime notes that Ramanujan's pattern for a(3), a(4), a(5) or prime(3), prime(4), prime(5) cannot be directly extended to prime(6) = 13, and shows solutions for 13, 17, 19.

Examples

			All {partition( 5k+4)} are divisible by prime(3) = 5, so a(3) = 5.
All {partition( 7k+5)} are divisible by prime(4) = 7, so a(4) = 7.
All {partition(11k+6)} are divisible by prime(5) = 11, so a(5) = 11.
		

Crossrefs

Cf. A333435 (x_n), A000040 (primes), A000041 (partitions).
Cf. A071734 (p(5k+4)/5), A071746 (p(7k+5)/7), A076394 (p(11k+6)/11).
Cf. A213260 (p(5k+4)).
Showing 1-9 of 9 results.