A213261 a(n) = p(7*n + 5), where p(k) = number of partitions of k = A000041(k).
7, 77, 490, 2436, 10143, 37338, 124754, 386155, 1121505, 3087735, 8118264, 20506255, 49995925, 118114304, 271248950, 607163746, 1327710076, 2841940500, 5964539504, 12292341831, 24908858009, 49686288421, 97662728555, 189334822579, 362326859895, 684957390936, 1280011042268, 2366022741845, 4328363658647, 7840656226137
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Ho-Hon Leung, Another Identity for Complete Bell Polynomials based on Ramanujan's Congruences, arXiv:1802.08443 [math.CO], 2018.
- Ho-Hon Leung, Another Identity for Complete Bell Polynomials based on Ramanujan's Congruences, J. Integer Seq. 21 (2018), Article 18.6.4.
- Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
Crossrefs
Programs
-
Mathematica
Table[PartitionsP[7 n + 5], {n, 0, 29}] (* Jean-François Alcover, Nov 12 2018 *)
-
PARI
a(n) = numbpart(7*n+5); \\ Michel Marcus, Jan 07 2015
Formula
a(n) = 7 * A071746(n). - Joerg Arndt, Nov 06 2016
Comments