cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213267 Expansion of phi(q^9) / (psi(-q) * chi(q^3)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 50, 63, 76, 92, 114, 140, 168, 201, 244, 295, 350, 415, 496, 591, 696, 818, 967, 1140, 1332, 1554, 1820, 2126, 2468, 2861, 3324, 3855, 4448, 5126, 5916, 6816, 7824, 8970, 10292, 11793, 13471, 15372, 17548
Offset: 0

Views

Author

Michael Somos, Jun 07 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k) * (1+x^(6*k)) * (1+x^(9*k))^5 * (1-x^(9*k))^3 / ((1-x^(4*k)) * (1+x^(3*k)) * (1-x^(36*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) * eta(x^18 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 * eta(x^9 + A)^2 * eta(x^36 + A)^2), n))}

Formula

Expansion of eta(q^2) * eta(q^3) * eta(q^12) * eta(q^18)^5 / (eta(q) * eta(q^4) * eta(q^6)^2 * eta(q^9)^2 * eta(q^36)^2) in powers of q.
Euler transform of period 36 sequence [ 1, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 1, 1, -2, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, ...].
a(n) = A132975(n) unless n=0.
a(2*n) = A128129(n). a(2*n + 1) = A132302.
a(3*n) = A164617(n). a(3*n + 1) = A132977(n). a(3*n + 2) = A132978(n).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2 * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015