A132302 Expansion of f(-x, -x^5) * f(-x^6) / f(-x)^2 in powers of x where f(, ) and f() are Ramanujan theta functions.
1, 1, 3, 5, 10, 15, 26, 39, 63, 92, 140, 201, 295, 415, 591, 818, 1140, 1554, 2126, 2861, 3855, 5126, 6816, 8970, 11793, 15372, 20007, 25857, 33356, 42771, 54734, 69683, 88530, 111968, 141312, 177642, 222842, 278557, 347484, 432095, 536230, 663549, 819504
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^2 + 5*x^3 + 10*x^4 + 15*x^5 + 26*x^6 + 39*x^7 + ... G.f. = q + q^3 + 3*q^5 + 5*q^7 + 10*q^9 + 15*q^11 + 26*q^13 + 39*q^15 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x^6]^2 / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 01 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^3 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)), n))};
Formula
Expansion of q^(-1/2) * eta(q^6)^3 / (eta(q) * eta(q^2) * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ 1, 2, 2, 2, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^2) * q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u^2 - v)^3 - 4 * v^4 * (v - 3*u^2) * (2*v - 3*u^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/6) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132301.
a(n) = A124243(2*n + 1) = A132180(2*n + 1) = A132975(2*n + 1) = A213267(2*n + 1). - Michael Somos, Nov 01 2015
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(7/4)*3^(3/2)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Comments