A213272 Costas arrays such that the terms in each row of the difference table are unique modulo n.
1, 2, 0, 8, 0, 12, 0, 0, 0, 40, 0, 48, 0, 0, 0, 128, 0, 108, 0, 0, 0, 220, 0, 0, 0, 0, 0, 336, 0
Offset: 1
Examples
The permutation (10, 9, 2, 8, 6, 1, 3, 7, 4, 5) corresponds to a Costas array: 10 9 2 8 6 1 3 7 4 5 (Permutation: p(1), p(2), p(3), ..., p(n) ) -1 -7 6 -2 -5 2 4 -3 1 (step-1 differences: p(2)-p(1), p(3)-p(2), ... ) -8 -1 4 -7 -3 6 1 -2 (step-2 differences: p(3)-p(1), p(4)-p(2), ... ) -2 -3 -1 -5 1 3 2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... ) -4 -8 1 -1 -2 4 ( etc. ) -9 -6 5 -4 -1 -7 -2 2 -3 -3 -5 3 -6 -4 -5 The values in each row are unique also modulo n=10: 10 9 2 8 6 1 3 7 4 5 (Permutation: p(1), p(2), p(3), ..., p(n) ) 9 3 6 8 5 2 4 7 1 (step-1 differences: p(2)-p(1), p(3)-p(2), ... ) 2 9 4 3 7 6 1 8 (step-2 differences: p(3)-p(1), p(4)-p(2), ... ) 8 7 9 5 1 3 2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... ) 6 2 1 9 8 4 ( etc. ) 1 4 5 6 9 3 8 2 7 7 5 3 4 6 5
Links
- Scott Rickard, costasarrays.org (information and papers about Costas arrays). [broken link?]
- Wikipedia, Costas array.
Comments