A213386 Smallest number k such that the sum of the distinct prime divisors of k equals n times a square > 1.
14, 15, 35, 39, 51, 95, 115, 87, 155, 111, 123, 215, 235, 159, 371, 183, 302, 335, 219, 511, 395, 415, 267, 623, 291, 303, 482, 327, 339, 791, 554, 1415, 635, 655, 411, 695, 662, 447, 698, 471, 734, 815, 835, 519, 1211, 543, 842, 1991, 579, 591, 914, 2167
Offset: 1
Keywords
Examples
a(55) = 2631 because 2631 = 3*877 and 3 + 877 = 880 = 55*16 where 16 is a square.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with (numtheory): sopf:= proc(n) option remember; add(i, i=factorset(n)) end: a:= proc(n) local k, p; for k from 2 while irem(sopf(k), n, 'p')>0 or sqrt(p)<>floor(sqrt(p)) or p=1 do od; k end: seq (a(n), n=1..100);
Comments