cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213420 Smallest number k such that the sum of prime factors of k (counted with multiplicity) is n times a square > 1.

Original entry on oeis.org

4, 15, 35, 39, 51, 95, 115, 87, 155, 111, 123, 215, 235, 159, 371, 183, 302, 335, 219, 511, 395, 415, 267, 623, 291, 303, 482, 327, 339, 791, 554, 1415, 635, 655, 411, 695, 662, 447, 698, 471, 734, 815, 835, 519, 1211, 543, 842, 1991, 579, 591, 914, 2167, 2587
Offset: 1

Views

Author

Michel Lagneau, Jun 11 2012

Keywords

Comments

Smallest k such that sopfr(k) = n*q^2.
a(n) = A213386(n), except for n = 1, 105, 173, 213, 227, 287, …

Examples

			a(105) = 3764 because 3764 = 2^2 * 941 and  the sum of prime factors  (counted with multiplicity) is 4 + 941 = 945 = 105*9 where 9 is a square.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    sopfr:= proc(n) option remember;
    add(i[1]*i[2], i=ifactors(n)[2])
    end:
    a:= proc(n) local k, p;
    for k from 2 while irem(sopfr(k), n, 'p')>0 or
    sqrt(p)<>floor(sqrt(p)) or p=1 do od; k
    end:
    seq (a(n), n=1..100);

A211144 Smallest number k such that the sum of the distinct prime divisors of k equals n times a nontrivial integer power.

Original entry on oeis.org

14, 15, 35, 39, 51, 95, 115, 87, 155, 111, 123, 215, 235, 159, 371, 183, 302, 335, 219, 471, 395, 415, 267, 623, 291, 303, 482, 327, 339, 791, 554, 1255, 635, 655, 411, 695, 662, 447, 698, 471, 734, 815, 835, 519, 1211, 543, 842, 1895, 579, 591, 914, 2167
Offset: 1

Views

Author

Michel Lagneau, Jun 27 2012

Keywords

Comments

Smallest k such that sopf(k) = n * m^q where m, q >= 2.
a(n) = A213386(n) except for n = 20, 32, 48, ...

Examples

			a(20) = 471 = 3*157, since the sum of the distinct prime divisors is 160 = 20*2^3.
		

Crossrefs

Programs

  • Maple
    with (numtheory):
    sopf:= proc(n) option remember;
    add(i, i=factorset(n))
    end:
    a:= proc(n) local k, q;
          for k while irem(sopf(k), n, 'q')>0 or
          igcd (map(i->i[2], ifactors(q)[2])[])<2 do od; k
        end:
    seq (a(n), n=1..100);

A213401 Smallest number k such that the sum of divisors of k equals n times a square > 1.

Original entry on oeis.org

3, 7, 6, 22, 19, 14, 12, 21, 22, 27, 43, 33, 198, 28, 24, 66, 67, 30, 98, 57, 44, 197, 367, 42, 343, 63, 85, 91, 463, 54, 48, 93, 86, 202, 76, 66, 511, 111, 99, 120, 163, 60, 1285, 129, 88, 274, 751, 105, 364, 199, 134, 198, 211, 102, 763, 84, 147, 346, 1765
Offset: 1

Views

Author

Michel Lagneau, Jun 10 2012

Keywords

Comments

Smallest k such that sigma(k) = n*q^2.

Examples

			a(8) = 21 because the sum of the divisors of 21 is 1 + 3 + 7 +21 = 32 = 8*4 where 4 is a square.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, p;
    for k from 1 while irem(sigma(k), n, 'p')>0 or
    sqrt(p)<>floor(sqrt(p)) or p=1 do od; k
    end:
    seq (a(n), n=1..100);
  • Mathematica
    snk[n_]:=Module[{k=2,c},c=Sqrt[DivisorSigma[1,k]/n];While[!IntegerQ[c] || c==1,k++;c=Sqrt[DivisorSigma[1,k]/n]];k]; Array[snk,60] (* Harvey P. Dale, Aug 27 2013 *)

A213931 Smallest number k such that the sum of divisors of k equals n times a nontrivial integer power.

Original entry on oeis.org

3, 7, 6, 21, 19, 14, 12, 21, 22, 27, 43, 33, 63, 28, 24, 66, 67, 30, 98, 57, 44, 129, 367, 42, 199, 63, 85, 84, 463, 54, 48, 93, 86, 201, 76, 66, 219, 111, 99, 120, 163, 60, 1285, 129, 88, 274, 751, 105, 156, 199, 134, 198, 211, 102, 327, 84, 147, 346, 1765
Offset: 1

Views

Author

Michel Lagneau, Jun 25 2012

Keywords

Comments

Smallest k such that sigma(k) = n * m^q where m, q >= 2.

Examples

			a(34) = 201 because sigma(201) = 272 = 34*2^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k, q;
          for k while irem(sigma(k), n, 'q')>0 or
          igcd(map(i->i[2], ifactors(q)[2])[])<2 do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 26 2012
  • Mathematica
    a[n_] := Module[{k, q, r}, For[k = 1, {q, r} = QuotientRemainder[ DivisorSigma[1, k], n]; r>0 || GCD @@ FactorInteger[q][[All, 2]]<2, k++]; k];
    Array[a, 100] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)
  • PARI
    a(n)=my(k);while(sigma(k++)%n || !ispower(sigma(k)/n), ); k \\ Charles R Greathouse IV, Jun 26 2012
Showing 1-4 of 4 results.