cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213386 Smallest number k such that the sum of the distinct prime divisors of k equals n times a square > 1.

Original entry on oeis.org

14, 15, 35, 39, 51, 95, 115, 87, 155, 111, 123, 215, 235, 159, 371, 183, 302, 335, 219, 511, 395, 415, 267, 623, 291, 303, 482, 327, 339, 791, 554, 1415, 635, 655, 411, 695, 662, 447, 698, 471, 734, 815, 835, 519, 1211, 543, 842, 1991, 579, 591, 914, 2167
Offset: 1

Views

Author

Michel Lagneau, Jun 10 2012

Keywords

Comments

Smallest k such that sopf(k) = n*q where q is a square.

Examples

			a(55) = 2631 because 2631 = 3*877 and 3 + 877 = 880 = 55*16 where 16 is a square.
		

Crossrefs

Programs

  • Maple
    with (numtheory):
    sopf:= proc(n) option remember;
    add(i, i=factorset(n))
    end:
    a:= proc(n) local k, p;
    for k from 2 while irem(sopf(k), n, 'p')>0 or
    sqrt(p)<>floor(sqrt(p)) or p=1 do od; k
    end:
    seq (a(n), n=1..100);

A213931 Smallest number k such that the sum of divisors of k equals n times a nontrivial integer power.

Original entry on oeis.org

3, 7, 6, 21, 19, 14, 12, 21, 22, 27, 43, 33, 63, 28, 24, 66, 67, 30, 98, 57, 44, 129, 367, 42, 199, 63, 85, 84, 463, 54, 48, 93, 86, 201, 76, 66, 219, 111, 99, 120, 163, 60, 1285, 129, 88, 274, 751, 105, 156, 199, 134, 198, 211, 102, 327, 84, 147, 346, 1765
Offset: 1

Views

Author

Michel Lagneau, Jun 25 2012

Keywords

Comments

Smallest k such that sigma(k) = n * m^q where m, q >= 2.

Examples

			a(34) = 201 because sigma(201) = 272 = 34*2^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k, q;
          for k while irem(sigma(k), n, 'q')>0 or
          igcd(map(i->i[2], ifactors(q)[2])[])<2 do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 26 2012
  • Mathematica
    a[n_] := Module[{k, q, r}, For[k = 1, {q, r} = QuotientRemainder[ DivisorSigma[1, k], n]; r>0 || GCD @@ FactorInteger[q][[All, 2]]<2, k++]; k];
    Array[a, 100] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)
  • PARI
    a(n)=my(k);while(sigma(k++)%n || !ispower(sigma(k)/n), ); k \\ Charles R Greathouse IV, Jun 26 2012
Showing 1-2 of 2 results.