cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213393 Number of (w,x,y) with all terms in {0,...,n} and 2*max(w,x,y) > 3*min(w,x,y).

Original entry on oeis.org

0, 6, 24, 54, 108, 192, 300, 450, 648, 882, 1176, 1536, 1944, 2430, 3000, 3630, 4356, 5184, 6084, 7098, 8232, 9450, 10800, 12288, 13872, 15606, 17496, 19494, 21660, 24000, 26460, 29106, 31944, 34914, 38088, 41472, 45000, 48750, 52728
Offset: 0

Views

Author

Clark Kimberling, Jun 11 2012

Keywords

Comments

Every term is even.
For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2*Max[w, x, y] > 3*Min[w, x, y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]   (* A213393 *)
    m/2   (* integers *)

Formula

a(n) + A213391(n+1) = (n+1)^3.
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8).
G.f.: 6*x*(x^2+1)*(x+1)^2 / ((x^2+x+1)^2*(x-1)^4).
From Ayoub Saber Rguez, Feb 01 2022: (Start)
a(n) = 6*A190798(n+1).
a(n) = A213392(n) - A092076(n).
a(n) = (8*n^2+16*n+8-8*n*((2*n+2) mod 3)-8*((2*n+2) mod 3)+2*((2*n+2) mod 3)^2)/3. (End)
E.g.f.: 2*exp(-x/2)*(6*exp(3*x/2)*(1 + x*(13 + 2*x*(6 + x))) - 3*(2 + x)*cos(sqrt(3)*x/2) - sqrt(3)*(2 - 3*x)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Feb 25 2023