cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213398 Number of (w,x,y) with all terms in {0,...,n} and min(|w-x|,|x-y|) = x.

Original entry on oeis.org

1, 4, 10, 17, 27, 38, 52, 67, 85, 104, 126, 149, 175, 202, 232, 263, 297, 332, 370, 409, 451, 494, 540, 587, 637, 688, 742, 797, 855, 914, 976, 1039, 1105, 1172, 1242, 1313, 1387, 1462, 1540, 1619, 1701, 1784, 1870, 1957, 2047, 2138, 2232, 2327
Offset: 0

Views

Author

Clark Kimberling, Jun 12 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Cf. A212959.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[x == Min[Abs[w - x], Abs[x - y]], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 60]]   (* A213398 *)
    LinearRecurrence[{2,0,-2,1},{1,4,10,17},50] (* Harvey P. Dale, Aug 05 2019 *)
  • PARI
    first(n) = Vec((1 + 2*x + 2*x^2 - x^3)/((1 - x)^3*(1 + x)) + O(x^n)) \\ Iain Fox, Feb 01 2018

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1 + 2*x + 2*x^2 - x^3)/((1 - x)^3*(1 + x)).
a(n) = (n+1)^2 + floor(n/2). [Wesley Ivan Hurt, Jul 15 2013]
From Iain Fox, Feb 01 2018: (Start)
E.g.f.: (1 + e^(2*x) * (3 + 14*x + 4*x^2))/(4 * e^x).
a(n) = (4*n^2 + 10*n + (-1)^n + 3)/4.
(End)