A213423 Number of partitions of n in which all parts are >= 2 and the largest part occurs at least four times.
1, 0, 1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 6, 3, 7, 5, 11, 7, 13, 11, 19, 15, 25, 21, 34, 30, 44, 42, 60, 56, 78, 78, 105, 103, 137, 139, 181, 186, 234, 246, 309, 323, 399, 425, 519, 554, 670, 721, 864, 934, 1108, 1206, 1425, 1548, 1816, 1989, 2318, 2539, 2945, 3235, 3738, 4111, 4726
Offset: 8
Keywords
Examples
For n = 16 we have three partitions: {[4+4+4+4], [3+3+3+3+2+2], [2+2+2+2+2+2+2+2]}, so a(16) = 3.
Crossrefs
Cf. A000041.
Programs
-
Maple
seq(combinat:-numbpart(n)-2*combinat:-numbpart(n-1)+combinat:-numbpart(n-3)+combinat:-numbpart(n-4)-2*combinat:-numbpart(n-6)+combinat:-numbpart(n-7),n=8..70)
Formula
a(n) = p(n)-2*p(n-1)+p(n-3)+p(n-4)-2*p(n-6)+p(n-7), where p(n) = A000041(n).
G.f.: (1-x)*Product_{k>3} 1/(1-x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (24*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{n >= 1} q^(4*n+4)/Product_{k = 1..n} 1- q^(k+1). - Peter Bala, Dec 01 2024