A213427 Number of ways of refining the partition n^1 to get 1^n.
1, 1, 2, 6, 18, 74, 314, 1614, 8650, 52794, 337410, 2373822, 17327770, 136539154, 1115206818, 9671306438, 86529147794, 816066328602, 7904640819682, 80089651530566, 832008919174434, 8983256694817802, 99219778649809162, 1134999470682805134, 13241030890523397154
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..40
- Olivier Gérard, The ranked posets L(2),...,L(8)
Programs
-
Maple
b:= proc(l) option remember; local i, j, n, t; n:=nops(l); `if`(n<2, {[0]}, `if`(l[-1]=0, b(subsop(n=NULL, l)), {l, seq(`if`(l[i]=0, {}[], {seq(b([seq(l[t]-`if`(t=1, l[t], `if`(t=i, 1, `if`(t=j and t=i-j, -2, `if`(t=j or t=i-j, -1, 0)))), t=1..n)])[], j=1..i/2)}[]), i=2..n)})) end: p:= proc(l) option remember; `if`(nops(l)=1, 1, add(p(x), x=b(l) minus {l})) end: a:= n-> p([0$(n-1), 1]): seq(a(n), n=1..25); # Alois P. Heinz, Jun 12 2012
Extensions
More terms from Alois P. Heinz, Jun 11 2012
Edited by Alois P. Heinz at the suggestion of Gus Wiseman, May 02 2016
Comments