cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A213477 Main diagonal starting k=2 of array A(k,n) = numbers n such that n^k - prime(n) is a prime.

Original entry on oeis.org

6, 10, 40, 14, 62, 76, 174, 278, 218, 702, 762, 758, 950, 858, 1782, 2290, 1596, 1462, 1848, 2964, 2262, 4278, 3750, 4320, 5076, 4010, 4890, 8040, 7494, 5962, 7996, 10318, 9424, 5770, 10080, 11088, 12222, 13806, 14712, 16904, 15222, 15620, 18258, 16092
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2012

Keywords

Examples

			The array begins:
=====================================================
....|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|
=====================================================
k=2.|...6.|..10.|..12.|..18.|..24.|..28.|..30.|..40.|A064712
k=3.|...2.|..10.|..38.|..42.|..44.|..50.|..66.|..74.|A212881
k=4.|...2.|...6.|..40.|..76.|.144.|.146.|.148.|.166.|A212883
=====================================================
		

References

  • The k=2 row is A064712 Numbers n such that n^2 - prime(n) is prime.
  • The k=3 row is A212881 Numbers n such that n^3 - prime(n) is prime.
  • The k=4 row is A212883 Numbers n such that n^4 - prime(n) is prime.
  • The k=8 row is A213428 Numbers n such that n^8 - prime(n) is prime.

Crossrefs

Programs

  • Mathematica
    Table[Select[Range[100000], PrimeQ[#^n - Prime[#]] &, n-1][[n-1]], {n, 2, 50}] (* T. D. Noe, Jun 13 2012 *)
Showing 1-1 of 1 results.