A213430 The number of n X n upper triangular (0,1)-matrices M with all diagonal entries 1 such that M = f(M^2) and sum(row 1) >= sum(row 2) >= ... >= sum(row n-1) >= sum(row n) = 1 and f maps any nonzero entry to 1.
1, 2, 6, 26, 159, 1347, 15593, 244173, 5131436
Offset: 1
References
- Collected papers of Professor Hansraj Gupta. Edited by R. J. Hans-Gill and Madhu Raka. Ramanujan Mathematical Society Collected Works Series, 3. See pp. 554-564.
- Hansraj Gupta, Number of topologies in a finite set, Research Bulletin of the Panjab University, Vol. 19 (1968), p. 240. MR0268836.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Hansraj Gupta, Number of topologies in a finite set, Research Bulletin of the Panjab University, Vol. 19 (1968), p. 240. MR0268836.
- Sean A. Irvine, Java program
- Wikipedia, Finite topological space.
- zbMATH, Review of Gupta article.
Extensions
a(7) and new name from Petros Hadjicostas, Jul 20 2024
a(8)-a(9) from Sean A. Irvine, Jul 20 2024
Comments