cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213493 Number of (w,x,y) with all terms in {0,...,n} and the numbers w,x,y,|w-x|,|x-y|,|y-w| distinct.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 12, 48, 96, 204, 300, 480, 684, 972, 1260, 1692, 2124, 2700, 3288, 4044, 4812, 5784, 6744, 7932, 9144, 10584, 12024, 13752, 15480, 17496, 19524, 21864, 24216, 26916, 29604, 32664, 35748, 39204, 42660, 46548, 50436, 54756
Offset: 0

Views

Author

Clark Kimberling, Jun 13 2012

Keywords

Comments

Every term is divisible by 12; see A213494.
For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Length[Union[{w, x, y, Abs[w - x], Abs[x - y], Abs[y - w]}]] ==
    6, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* this sequence *)
    m/12  (* A213494 *)
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 12, 48, 96, 204}, 60]

Formula

a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10).
G.f.: 12*(x^6 + 3*x^7 + 3*x^8 + 5*x^9)/(1 - x - x^2 + 2*x^5 - x^8 - x^9 + x^10).