Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 4, 8, 17, 25, 40, 57, 81, 105, 141, 177, 225, 274, 337, 401, 482, 562, 661, 762, 882, 1002, 1146, 1290, 1458, 1627, 1822, 2018, 2243, 2467, 2722, 2979, 3267, 3555, 3879, 4203, 4563, 4924, 5323, 5723, 6164, 6604, 7087, 7572
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).
-
LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1},{0,0,0,0,0,0,1,4,8,17},60] (* Harvey P. Dale, Jul 03 2021 *)
A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
Showing 1-2 of 2 results.
Comments