cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213501 Number of (w,x,y) with all terms in {0,...,n} and w != max(|w-x|, |x-y|).

Original entry on oeis.org

0, 4, 16, 45, 94, 172, 281, 433, 626, 875, 1177, 1547, 1981, 2497, 3087, 3772, 4543, 5421, 6396, 7492, 8695, 10032, 11488, 13090, 14822, 16714, 18746, 20951, 23308, 25850, 28555, 31459, 34536, 37825, 41299, 44997, 48891, 53023, 57361, 61950, 66757, 71827
Offset: 0

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w != Max[Abs[w - x], Abs[x - y]], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]
    LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{0,4,16,45,94,172,281,433},50] (* Harvey P. Dale, Oct 01 2021 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8).
G.f.: x*(4 + 12*x + 21*x^2 + 21*x^3 + 12*x^4 + 2*x^5)/((1 - x)^4*(1 + x)^2*(1 + x + x^2)).
a(n) = (n+1)^3 - A213395(n).
a(n) = (6*n*(n+1)*(24*n+17) - 9*(2*n+1)*(-1)^n + 32*cos(2*Pi*(n+2)/3) + 25)/144. - Bruno Berselli, Jul 02 2012