A213542 a(n) = k AND k^k, where k=2*n+1, AND is the bitwise AND operator.
1, 3, 5, 7, 9, 3, 13, 15, 17, 3, 5, 7, 25, 3, 13, 31, 33, 35, 5, 7, 41, 35, 13, 15, 49, 35, 37, 7, 57, 35, 45, 63, 65, 67, 69, 7, 9, 3, 13, 15, 81, 67, 5, 7, 25, 3, 77, 31, 97, 35, 5, 7, 41, 99, 77, 15, 113, 35, 37, 7, 57, 99, 109, 127, 129, 131, 133, 7, 137, 131
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A213541.
Programs
-
Maple
a:= proc(n) local i, k, m, r; k:= 2*n+1; m:= k &^ k mod (2^(1+ilog2(k))); r:= 0; for i from 0 while (m>0 or k>0) do r:= r +2^i* irem(m, 2, 'm') *irem(k, 2, 'k') od; r end: seq(a(n), n=0..100); # Alois P. Heinz, Jun 21 2012
-
Mathematica
Table[BitAnd[n,n^n],{n,1,141,2}] (* Harvey P. Dale, Nov 26 2014 *)
-
Python
print([k**k & k for k in range(1,222,2)])