cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213554 Principal diagonal of the convolution array A213553.

Original entry on oeis.org

1, 43, 334, 1406, 4271, 10577, 22764, 44220, 79437, 134167, 215578, 332410, 495131, 716093, 1009688, 1392504, 1883481, 2504067, 3278374, 4233334, 5398855, 6807977, 8497028, 10505780, 12877605, 15659631, 18902898, 22662514
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> n*(39*n^4 +15*n^3 -25*n^2 +1)/30); # G. C. Greubel, Jul 31 2019
  • Magma
    [n*(39*n^4 +15*n^3 -25*n^2 +1)/30: n in [1..30]]; // G. C. Greubel, Jul 31 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n; c[n_]:= n^3;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[T[n, k], {k, 1, 60}]  (* A213553 *)
    d = Table[T[n, n], {n, 1, 40}] (* A213554 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A101089 *)
    (* Second program *)
    Table[(39n^5+15n^4-25n^3+n)/30,{n,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,43,334,1406,4271,10577},30] (* Harvey P. Dale, Jan 15 2013 *)
  • PARI
    vector(30, n, n*(39*n^4 +15*n^3 -25*n^2 +1)/30) \\ G. C. Greubel, Jul 31 2019
    
  • Sage
    [n*(39*n^4 +15*n^3 -25*n^2 +1)/30 for n in (1..30)] # G. C. Greubel, Jul 31 2019
    

Formula

a(n) = n*(39*n^4 + 15*n^3 - 25*n^2 + 1)/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: x*(1 + 37*x + 91*x^2 + 27*x^3)/(1 - x)^6.