A213554 Principal diagonal of the convolution array A213553.
1, 43, 334, 1406, 4271, 10577, 22764, 44220, 79437, 134167, 215578, 332410, 495131, 716093, 1009688, 1392504, 1883481, 2504067, 3278374, 4233334, 5398855, 6807977, 8497028, 10505780, 12877605, 15659631, 18902898, 22662514
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([1..30], n-> n*(39*n^4 +15*n^3 -25*n^2 +1)/30); # G. C. Greubel, Jul 31 2019
-
Magma
[n*(39*n^4 +15*n^3 -25*n^2 +1)/30: n in [1..30]]; // G. C. Greubel, Jul 31 2019
-
Mathematica
(* First program *) b[n_]:= n; c[n_]:= n^3; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[T[n, k], {k, 1, 60}] (* A213553 *) d = Table[T[n, n], {n, 1, 40}] (* A213554 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A101089 *) (* Second program *) Table[(39n^5+15n^4-25n^3+n)/30,{n,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,43,334,1406,4271,10577},30] (* Harvey P. Dale, Jan 15 2013 *)
-
PARI
vector(30, n, n*(39*n^4 +15*n^3 -25*n^2 +1)/30) \\ G. C. Greubel, Jul 31 2019
-
Sage
[n*(39*n^4 +15*n^3 -25*n^2 +1)/30 for n in (1..30)] # G. C. Greubel, Jul 31 2019
Formula
a(n) = n*(39*n^4 + 15*n^3 - 25*n^2 + 1)/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: x*(1 + 37*x + 91*x^2 + 27*x^3)/(1 - x)^6.