A213557 Antidiagonal sums of the convolution array A213590.
1, 6, 23, 70, 184, 438, 971, 2042, 4125, 8076, 15424, 28876, 53189, 96670, 173747, 309362, 546456, 958690, 1672015, 2901170, 5011321, 8621976, 14781888, 25263000, 43053769, 73186038, 124119311, 210055582, 354806200, 598245006
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (5,-8,2,6,-4,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([1..40], n-> n*F(n+7) -2*F(n+9) +2*(n^2+10*n+ 34)); # G. C. Greubel, Jul 06 2019
-
Magma
F:=Fibonacci; [n*F(n+7) -2*F(n+9) +2*(n^2+10*n+34): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
Mathematica
(* First program *) b[n_]:= n^2; c[n_]:= Fibonacci[n]; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *) r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *) Table[T[n, n], {n, 1, 40}] (* A213504 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] Table[s[n], {n, 1, 50}] (* A213557 *) (* Second program *) With[{F = Fibonacci}, Table[n*F[n+7] -2*F[n+9] +2*(n^2+10*n+34), {n,40}]] (* G. C. Greubel, Jul 06 2019 *) LinearRecurrence[{5,-8,2,6,-4,-1,1},{1,6,23,70,184,438,971},30] (* Harvey P. Dale, Jun 04 2025 *)
-
PARI
vector(40, n, f=fibonacci; n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34)) \\ G. C. Greubel, Jul 06 2019
-
Sage
f=fibonacci; [n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34) for n in (1..40)] # G. C. Greubel, Jul 06 2019
Formula
a(n) = 5*a(n-1) - 8*a(n-2) + 2*a(n-3) + 6*a(n-4) - 4*a(n-5) - a(n-6) + a(n-7).
G.f.: f(x)/g(x), where f(x) = x*(1 + x + x^2 + x^3) and g(x) = (1 - x)^3 (1 - x - x^2)^2.
a(n) = n*Fibonacci(n+7) - 2*Fibonacci(n+9) + 2*n^2 + 20*n + 68. - G. C. Greubel, Jul 06 2019