cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213557 Antidiagonal sums of the convolution array A213590.

Original entry on oeis.org

1, 6, 23, 70, 184, 438, 971, 2042, 4125, 8076, 15424, 28876, 53189, 96670, 173747, 309362, 546456, 958690, 1672015, 2901170, 5011321, 8621976, 14781888, 25263000, 43053769, 73186038, 124119311, 210055582, 354806200, 598245006
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..40], n-> n*F(n+7) -2*F(n+9) +2*(n^2+10*n+ 34)); # G. C. Greubel, Jul 06 2019
  • Magma
    F:=Fibonacci; [n*F(n+7) -2*F(n+9) +2*(n^2+10*n+34): n in [1..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n^2; c[n_]:= Fibonacci[n];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213504 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213557 *)
    (* Second program *)
    With[{F = Fibonacci}, Table[n*F[n+7] -2*F[n+9] +2*(n^2+10*n+34), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
    LinearRecurrence[{5,-8,2,6,-4,-1,1},{1,6,23,70,184,438,971},30] (* Harvey P. Dale, Jun 04 2025 *)
  • PARI
    vector(40, n, f=fibonacci; n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34)) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    f=fibonacci; [n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34) for n in (1..40)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = 5*a(n-1) - 8*a(n-2) + 2*a(n-3) + 6*a(n-4) - 4*a(n-5) - a(n-6) + a(n-7).
G.f.: f(x)/g(x), where f(x) = x*(1 + x + x^2 + x^3) and g(x) = (1 - x)^3 (1 - x - x^2)^2.
a(n) = n*Fibonacci(n+7) - 2*Fibonacci(n+9) + 2*n^2 + 20*n + 68. - G. C. Greubel, Jul 06 2019