A213560 Antidiagonal sums of the convolution array A213558.
1, 24, 236, 1400, 6009, 20608, 59952, 153792, 357225, 765688, 1535820, 2913560, 5270993, 9153600, 15339712, 24914112, 39357873, 60656664, 91429900, 135083256, 195987209, 279684416, 393128880, 544960000, 745814745, 1008681336, 1349297964, 1786600216, 2343221025
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Henri Muehle, Proper Mergings of Stars and Chains are Counted by Sums of Antidiagonals in Certain Convolution Arrays -- The Details, arXiv preprint arXiv:1301.1654 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Mathematica
(See A213558.)
Formula
a(n) = n*(1 + n)^2*(2 + n)*(16 + 18*n + 21*n^2 + 12*n^3 + 3*n^4)/840.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
G.f.: x*(1 + x)*(1 + 4*x + x^2)*(1 + 10*x + x^2)/(1 - x)^9.
Comments