A213567 Principal diagonal of the convolution array A213566.
1, 13, 59, 183, 476, 1108, 2409, 4993, 10007, 19559, 37504, 70832, 132145, 244029, 446763, 811847, 1465676, 2630836, 4697945, 8350305, 14779671, 26058903, 45784224, 80179968, 139995361, 243755533, 423324539, 733409943
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,5,12,-12,-3,6,0,-1).
Programs
-
GAP
F:=Fibonacci;; List([1..30], n-> (2*n+3)*F(n+3)+(n^2+2)*F(n+2) -4*(n^2+2*n+2)); # G. C. Greubel, Jul 26 2019
-
Magma
F:= Fibonacci; [(2*n+3)*F(n+3)+(n^2+2)*F(n+2) -4*(n^2+2*n+2): n in [1..30]]; // G. C. Greubel, Jul 26 2019
-
Mathematica
(* First program *) b[n_]:= Fibonacci[n]; c[n_]:= n^2; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213566 *) d = Table[t[n, n], {n, 1, 40}] (* A213567 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213570 *) (* Second program *) Table[(2*n+3)*Fibonacci[n+3] +(n^2+2)*Fibonacci[n+2] -4*(n^2+2*n+2), {n, 30}] (* G. C. Greubel, Jul 26 2019 *)
-
PARI
vector(30, n, f=fibonacci; (2*n+3)*f(n+3)+(n^2+2)*f(n+2) -4*(n^2+ 2*n+2)) \\ G. C. Greubel, Jul 26 2019
-
Sage
f=fibonacci; [(2*n+3)*f(n+3)+(n^2+2)*f(n+2) -4*(n^2+ 2*n+2) for n in (1..30)] # G. C. Greubel, Jul 26 2019
Formula
a(n) = 6*a(n-1) - 12*a(n-2) - 5*a(n-3) + 12*a(n-4) - 12*a(n-5) - 3*a(n-6) + 6*a(n-7) - a(n-9).
G.f.: f(x)/g(x), where f(x) = x*(1 + 7*x - 7*x^2 - 20*x^3 + 9*x^4 + 9*x^5 + 9*x^6) and g(x) = (1 - 2*x + x^3)^3.
a(n) = (2*n + 3)*Fibonacci(n+3) + (n^2 + 2)*Fibonacci(n+2) - 4*(n^2 + 2*n + 2). - G. C. Greubel, Jul 26 2019