cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A213566 Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = (n-1+h)^2, F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 4, 15, 13, 9, 36, 33, 25, 16, 76, 71, 59, 41, 25, 148, 140, 120, 93, 61, 36, 273, 260, 228, 183, 135, 85, 49, 485, 464, 412, 340, 260, 185, 113, 64, 839, 805, 721, 604, 476, 351, 243, 145, 81, 1424, 1369, 1233, 1044, 836, 636, 456, 309, 181, 100
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213567.
Antidiagonal sums: A213570.
Row 1, (1,1,2,3,5,...)**(1,4,9,16,25,...): A053808.
Row 2, (1,1,2,3,5,...)**(4,9,16,25,...).
Row 3, (1,1,2,3,5,...)**(16,25,49,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....5....15....36....76
4....13...33....71....140
9....25...59....120...228
16...41...93....183...340
25...61...135...260...476
		

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; Flat(List([1..12], n-> List([1..n], k-> k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 ))); # G. C. Greubel, Jul 26 2019
  • Magma
    F:=Fibonacci; [k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4: k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n]; c[n_]:= n^2;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213566 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213567 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213570 *)
    (* Second program *)
    With[{F = Fibonacci}, Table[k*(k*F[n-k+3] +2*F[n-k+4]) + F[n-k+7] -(k+2) *(2*n-k+4) -(n-k+1)^2 -4, {n, 12}, {k, n}]//Flatten] (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    f=fibonacci;
    for(n=1,12, for(k=1,n, print1(k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4, ", "))) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    f=fibonacci; [[k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019
    

Formula

T(n,k) = 4*T(n,k-1)-5*T(n,k-2)+T(n,k-3)+2*T(n,k-4)-T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(n^2 - (2*n^2 - 2*n - 1)*x + (n - 1)^2 *x^2) and g(x) = (1 - x - x^2)*(1 - x )^3.
T(n,k) = n*(n*F(k+2) + 2*F(k+3)) + F(k+6) - (n+2)*(2*k+n+2) - k^2 - 4, F = A000045. - Ehren Metcalfe, Jul 10 2019

A213570 Antidiagonal sums of the convolution array A213566.

Original entry on oeis.org

1, 9, 37, 110, 272, 598, 1213, 2323, 4265, 7588, 13184, 22500, 37881, 63125, 104381, 171602, 280896, 458330, 746085, 1212415, 1967761, 3190824, 5170752, 8375400, 13561777, 21954753, 35536213, 57512918, 93073520, 150613438
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..35], n-> Fibonacci(n+9)+Lucas(1,-1,n+8)[2] -(n^3+9*n^2 +39*n+81)); # G. C. Greubel, Jul 26 2019
  • Magma
    [Fibonacci(n+9) +Lucas(n+8) -(n^3+9*n^2+39*n+81): n in [1..35]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n]; c[n_]:= n^2;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213566 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213567 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213570 *)
    (* Second program *)
    Table[Fibonacci[n+9] + LucasL[n+8] -(n^3+9*n^2+39*n+81), {n,35}] (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    vector(35,n, f=fibonacci; 2*f(n+9)+f(n+7) -(n^3+9*n^2+39*n+81)) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    [fibonacci(n+9) +lucas_number2(n+8,1,-1) -(n^3+9*n^2+39*n+81) for n in (1..35)] # G. C. Greubel, Jul 26 2019
    

Formula

a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 + 4*x + x^2) and g(x) = (1 - x - x^2)*(1 - x)^4.
a(n) = Fibonacci(n+9) + Lucas(n+8) - n*(n^2 + 9*n + 39) - 81. - Ehren Metcalfe, Jul 10 2019
a(n) = Sum_{k=1..n} k^3 * Fibonacci(n+1-k). - Greg Dresden, Feb 27 2022
Showing 1-3 of 3 results.