A213570 Antidiagonal sums of the convolution array A213566.
1, 9, 37, 110, 272, 598, 1213, 2323, 4265, 7588, 13184, 22500, 37881, 63125, 104381, 171602, 280896, 458330, 746085, 1212415, 1967761, 3190824, 5170752, 8375400, 13561777, 21954753, 35536213, 57512918, 93073520, 150613438
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).
Programs
-
GAP
List([1..35], n-> Fibonacci(n+9)+Lucas(1,-1,n+8)[2] -(n^3+9*n^2 +39*n+81)); # G. C. Greubel, Jul 26 2019
-
Magma
[Fibonacci(n+9) +Lucas(n+8) -(n^3+9*n^2+39*n+81): n in [1..35]]; // G. C. Greubel, Jul 26 2019
-
Mathematica
(* First program *) b[n_]:= Fibonacci[n]; c[n_]:= n^2; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213566 *) d = Table[t[n, n], {n, 1, 40}] (* A213567 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213570 *) (* Second program *) Table[Fibonacci[n+9] + LucasL[n+8] -(n^3+9*n^2+39*n+81), {n,35}] (* G. C. Greubel, Jul 26 2019 *)
-
PARI
vector(35,n, f=fibonacci; 2*f(n+9)+f(n+7) -(n^3+9*n^2+39*n+81)) \\ G. C. Greubel, Jul 26 2019
-
Sage
[fibonacci(n+9) +lucas_number2(n+8,1,-1) -(n^3+9*n^2+39*n+81) for n in (1..35)] # G. C. Greubel, Jul 26 2019
Formula
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 + 4*x + x^2) and g(x) = (1 - x - x^2)*(1 - x)^4.
a(n) = Fibonacci(n+9) + Lucas(n+8) - n*(n^2 + 9*n + 39) - 81. - Ehren Metcalfe, Jul 10 2019
a(n) = Sum_{k=1..n} k^3 * Fibonacci(n+1-k). - Greg Dresden, Feb 27 2022