A213575 Antidiagonal sums of the convolution array A213573.
1, 10, 47, 158, 441, 1098, 2539, 5590, 11909, 24818, 50967, 103662, 209521, 421786, 846947, 1697990, 3400893, 6807618, 13622095, 27252190, 54513641, 109037930, 218088027, 436189878, 872395381, 1744808338, 3489636359
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Programs
-
GAP
List([1..30], n-> 13*2^(n+1)-(n^3+6*n^2+18*n+26)); # G. C. Greubel, Jul 25 2019
-
Magma
[13*2^(n+1)-(n^3+6*n^2+18*n+26): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
Mathematica
(* First program *) b[n_]:= 2^(n-1); c[n_]:= n^2; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213573 *) d = Table[t[n, n], {n, 1, 40}] (* A213574 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213575 *) (* Additional programs *) Table[Sum[k^3*2^(n-k),{k,0,n}],{n,1,30}] (* Vaclav Kotesovec, Nov 28 2013 *)
-
PARI
vector(30, n, 13*2^(n+1)-(n^3+6*n^2+18*n+26)) \\ G. C. Greubel, Jul 25 2019
-
Sage
[13*2^(n+1)-(n^3+6*n^2+18*n+26) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Formula
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
G.f.: x*(1 + 4 x + x^2)/((1 - 2*x)*(1 - x)^4).
From Stanislav Sykora, Nov 27 2013: (Start)
a(n) = 2^n*Sum_{k=0..n} k^p*q^k, for p=3, q=1/2.
a(n) = 2^(n+1)*13 - (n^3 + 6*n^2 + 18*n + 26). (End)
a(n) = 2*a(n-1) + n^3. - Sochima Everton, Biereagu, Jul 14 2019
E.g.f.: 26*exp(2*x) - (26 +25*x +9*x^2 +x^3)*exp(x). - G. C. Greubel, Jul 25 2019